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Abstract

Bayesian Networks (BNs) are popular computer models used to perform reasoning
under uncertainty. They are popular as they are one of the few computer models
able to be constructed by analysing historical data or expert elicitation. The main
contribution of this thesis is a new workflow for expert elicitation of BNs, aim-
ing to reduce the associated knowledge elicitation bottleneck. This bottleneck is
caused by logistical issues associated with interviewing multiple experts, resolving
conflicting opinions among experts, and the combinatorial explosion that occurs
when eliciting probabilities. The workflow proposed in this thesis brings together
research from the fields of BN construction, knowledge acquisition, the survey
methodology, and crowd sourcing. The end result is a workflow for conducting on-
line surveys (SEBN) which has been implemented in an open source online survey
tool called BN Elicitator (BNE). This workflow allows a greater number of ex-
perts to contribute to the construction of BNs compared to traditional elicitation
approaches. It also reduces the workload of the knowledge engineer facilitating
the BN elicitation and minimizes the time required of each expert contributing
knowledge to the BN.

Two evaluation surveys were conducted using the BNE software to measure how
successfully the newly proposed technique was able to elicit BNs. The results of
these evaluations showed a small improvement over the currently employed meth-
ods of eliciting BNs from experts (primarily face to face interviews) but also many
undesirable outcomes. The improvements obtained allowed the BNE software to
facilitate the elicitation of a BN was faster than would have otherwise been re-
quired for face to face interviews. However, the BN resulting from the evaluation
did not compare favourably to an existing published BN. Issues with the methods
used to collate survey responses into a BN were identified and discussed, such as
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the choice of crowd sourcing algorithms. Such issues highlight the need for further
research in this area to improve the accuracy of BNs elicited using online surveys.
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1. Introduction

1.1. Motivation

Over the past decades, computer models have been used to help decision makers
in a diverse range of fields such as business (e.g. wu Liao et al., 2008), medicine
(e.g. Lucas et al., 2004, p205), and ecology (e.g. Pollino et al., 2007), amongst
others. The ability to use models in place of potentially costly experiments or
risky interventions saves time, money and effort for all involved. Despite the
diverse range of model types available, there is one common trait they all share.
The more accurately they represent the real world, the more useful they become
for investigations and supporting decision makers. Thus, there is a continual drive
from both industry and academia to find new and novel ways to build better, more
accurate models, and to build them more efficiently.

This thesis focuses on a particular type of model called a Bayesian Network (BN,
Pearl 1988). These have several desirable properties which contribute to their
success. First and foremost, they are probabilistic in nature enabling them to
explicitly deal with uncertainty. This allows them to perform reasoning even when
there is only imperfect background knowledge available. Other desirable attributes
include their graphical nature, which makes them intuitive to people who do not
have a computer science background (Korb and Nicholson, 2011, p145), and their
ability to represent complex relationships between many variables.

One of the main ways in which computer models, including BNs, are built is by
using algorithms to analyse large historical data sets to identify patterns (e.g. Korb
and Nicholson, 2011, p181-292). Continual advances in technology have allowed
increasingly more data to be collected in many diverse fields. These same advances
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Chapter 1 Introduction

have also encouraged novel algorithms for processing data, making it more feasible
to use data to build computer models.

The other way in which such models can be constructed is through Knowledge
Acquisition (KA, e.g. Korb and Nicholson, 2011, p293-404). As its name suggests,
KA is the process of eliciting knowledge that experts have acquired through edu-
cation and experience. Experts have been shown to be helpful at transferring their
knowledge and experience into models which can then be used to aid in decision
making (Eriksson, 1992). BNs belong to a somewhat unique group of models which
can be constructed by both data analysis and expert elicitation.

There are many text books on the topic of expert elicitation (e.g. Milton, 2008),
including several that focus specifically on BN construction (e.g. Kjærulff and
Madsen, 2013; Korb and Nicholson, 2011). In addition, there is a wealth of applied
research using expert elicitation in the construction of BNs (e.g. Chan et al., 2010;
Kuikka and Varis, 1997; Przytula and Thompson, 2000). However, there is also a
well established understanding that KA results in a situation whereby the time,
effort, and cost involved in acquiring the requisite knowledge is greater than the
benefit gained by building a system using KA (d’Aquin et al., 2008, p21). This is
commonly referred to as the knowledge elicitation bottleneck (Feigenbaum, 1977).
Despite this interest from industry and researchers who opt to use KA as a tool for
producing BNs, there is little research in developing new theories to elicit relevant
expert knowledge and overcome the knowledge bottleneck. This is best summed
up by Helsper and Van der Gaag (2002):

“As more and more Bayesian networks are being developed for complex
applications, their construction and maintenance calls for the use of
tailor-made knowledge-engineering methodologies” (p680)

Areas which currently cause problems when eliciting BNs from experts include
the sheer number of probabilities which need to be elicited (van der Gaag et al.,
1999), the logistical issues of organising many experts together in order to conduct
elicitation, and how to deal with conflicting opinions among experts during the
elicitation process (e.g. Clemen and Winkler, 1999). This research aims to address
these issues and provide a new and novel method of KA for BNs, making use
of online surveys in place of more traditional interviews and focus groups. The
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1.2 Research Questions and Goals

following section elaborates on this goal in more detail.

1.2. Research Questions and Goals

The goal of this thesis was to propose a KA technique for constructing BNs which
captures the expertise of a greater number of domain experts compared to exist-
ing approaches. When conducting expert elicitation, the goal is to document as
accurately as possible the current expertise in a particular field. If only a small
number of experts participate in a KA process, then it stands to reason that there
is a higher chance of missing out on important expertise. Thus by increasing the
number of experts participating in KA, the resulting model will be less biased
towards opinions of the few experts who contribute by including a broader range
of knowledge from a more diverse group of experts. The more experts contribute,
the better the resulting model is likely to be. This will be achieved by repla-
cing the face-to-face interview component of traditional KA, with online survey
questionnaires, as they have the potential ability to reach a greater number of
people.

Hence, the main research question for the thesis was:

How can the process of eliciting knowledge for construction of Bayesian
Networks be improved by making use of online surveys instead of face-
to-face interviews?

This research started from the premise that KA has been shown as a viable and
useful way to construct BNs (e.g. Chan et al., 2010; Hoverman et al., 2011; Martin
et al., 2005). The project focused on one aspect of this process, the face-to-face
interviews, and investigated how the knowledge bottle neck introduced by these
interviews can be alleviated through the use of online surveys. Primarily, the
research aimed to make it possible to include a wider and more diverse range
of knowledgeable experts in the KA process. In order to facilitate more expert
contributions, the following sub-questions were also be addressed:

1. As more experts are consulted, how can the total time and effort involved in
KA for BNs be reduced?
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2. As more expert opinions are gathered, how can they be collated into a single
BN model without significantly increasing the workload to resolve differences?

By addressing these sub questions, this thesis produced a KA technique for eliciting
BNs via online surveys. Compared to traditional face-to-face interviews, this new
technique exhibits the following characteristics:

• Less time required of experts and researchers alike.

• Easier integration of differing opinions into the BN model.

• Less constraints on where and when experts can contribute.

Less Time If the time commitment is large, then experts may reconsider setting
aside the time to contribute. Existing survey research often uses monetary pay-
ments or prizes to encourage participation (Bosnjak and Tuten, 2003), however
even with additional incentives, lengthy processes still deter people from particip-
ating (Marcus et al., 2007). The less time required of experts, the more it will
encourage them to commit their time to a KA process (Marcus et al., 2007). As
such, this thesis focuses heavily on reducing the number of questions and sub-
sequent amount of feedback that is required of each expert.

Easier Integration of Differing Opinions As more experts become involved in
a KA process, there will be more opinions that need to be incorporated into the
model. As the number of conflicting opinions increase, so does the difficulty of
resolving those differences. This research addresses the problem by leveraging
algorithms from the field of crowd sourcing to combine opinions from multiple
people.

Less Constraints Finally, if experts need to be present at a specific location at
a given time (e.g. for a focus group with other experts), it reduces the chance
they will be available to participate. Removing this constraint should ensure more
experts will be available to contribute to the model. Therefore this research pro-
posed an online survey based technique which can be completed online at the time
of the experts choosing.
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1.3 Research Background

The goal was to ensure that the magnitude of the elicitation task does not increase
too much as more experts are included. The end result is that the number of
potential experts who are able and willing to contribute their knowledge to a
model is maximised. In addition, this research is intended to encourage others to
investigate better ways of eliciting knowledge for BN construction.

1.3. Research Background

For a long time people have used models to hide or abstract away complexities,
test predictions and generally provide a better understanding of the world. A
model train hides the complexity of a steam engine from children; Newtons model
of gravity allowed calculations of how the planets and other smaller objects move;
and IBMs “Watson” artificial intelligence tries to model as much general purpose
knowledge as possible so that people can query it effectively.

It is becoming more common for decision makers in fields such as business (e.g.
wu Liao et al., 2008), medicine (e.g. van der Gaag et al., 2002), genetics (e.g.
Friedman et al., 2000), ecology (e.g. Shenton et al., 2013), and others to enlist
the help of computer models in order to aid in decision making. As technology
advances, a broader range of areas have taken advantage of computer models with
a higher degree of success.

To illustrate an example, imagine a system to help insurance workers estimate the
risk of insuring particular drivers (Figure 1.1). As with most software, such systems
can be quite complex. This thesis was not concerned with the user interface
or the database, but rather the one or more underlying models which perform
calculations, make predictions, or generally help in making decisions. The example
system in Figure 1.1 opts to make use of a BN model. When using a BN model
to help aid in decision making for an insurance broker, the model takes in as
much evidence about a particular client as possible (e.g. age, number of previous
accidents, etc). The BN will then provide estimations of any remaining variables
which have not yet been specified as evidence, such as the chance of them having
an accident, or their car getting stolen. In summary, the user specifies evidence
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about a client, and the model outputs the expected cost to the insurance company
for insuring that client.

1) Enter details
of client
to insure 

4) Show
suggested 

premium and
excess

Risk
assessment

software
Bayesian
Network 
model

2) Consult
model 

3) Calculate
likely cost
of insuring
this client

Figure 1.1.: High level overview of an example car insurance risk assessment
system using a BN to help make decisions.

This example illustrates important characteristics which are common to most mod-
els, even though many different models could have been used for such a system.
The actual reasoning process is abstracted from both the end user and the software
system. It is not a requirement for either of them to concern themselves with the
specific implementation details of the BN model. However, this abstraction allows
input to be given, and useful responses to be provided in response.

It is absolutely essential that the underlying model is as accurate and efficient
as it can be, although the rest of the system (e.g. user interface, database, etc)
is also important. Entire fields of research and industry have been dedicated
to the building of models that leverage the ability of computers to aid in decision
making. Often the process of producing models requires vast amounts of data, and
clever ways to analyse that data. The fields of machine learning and data mining
have produced numerous algorithms capable of “learning” models by analysing
large data sets (Russell and Norvig, 2010) that have subsequently found favour in
artificial intelligence, decision support, and other applied fields.

Research in the areas of machine learning and data mining represents a fast growing
body of literature. Existing methods get improved incrementally, several methods
may get combined, and occasionally completely new methods arise. The end goal
is usually to produce an effective and efficient model, both with respect to the
process of constructing the model, and also the ability of the model to be used
to perform calculations and hence support decision making. This thesis presents
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a technique for combining existing techniques, in order to improve the process of
eliciting BNs from experts.

1.3.1. Bayesian Networks (BNs)

A particular type of model commonly constructed using either machine learning or
KA is a BN. BNs have been successfully applied to solve problems in many diverse
fields over the past three decades since being popularised by Pearl (1988). Tech-
nically speaking, a BN is “a probabilistic graphical model, which encodes the con-
ditional independence relationships between various random variables” (Friedman
et al., 1997, p134). For the purpose of this introduction, the following definition
will be used:

“Bayesian networks are probabilistic models which represent the causal
relationships between variables. This in turn allows them to be used
to make inferences about the complex interaction between these vari-
ables.”1

Figure 1.2.: Example “Cancer” Bayesian network (from Cooper, 1999).

Figure 1.2 shows an example BN that models the relationship between smoking,
bronchitis, lung cancer, fatigue and x-ray screenings (Cooper, 1999). This relatively

1This definition is intentionally kept brief, and as such does not completely describe BNs. Not
all BNs encode causal relationships, nor have every aspect of BNs been described here. For
a more detailed definition, see Section 2.2 (p24)
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simple model can aid decision makers in several ways. One such way is by providing
a better understanding of the problem at hand, with observations such as:

1. A fatigued patient may have either lung cancer or bronchitis. How-
ever if a mass is seen on their X-Ray, then the fatigue is likely caused
by lung cancer, not bronchitis.

As this BN models causal relationships, it also facilitates causal reasoning, enabling
statements such as:

2. If you have lung cancer, it is more likely that you will also be fatigued

Doctors could propose medical interventions and investigate their effects without
resorting to potentially costly, risky, or unethical experimentation:

3. If you were to increase your smoking from one cigarette a day to a
pack a day, it will increase the chance of you having bronchitis by X%,
and lung cancer by Y%.

As with most computer models, it is common to construct BN models by analys-
ing data sets and identifying the relevant relationships between variables. Many
algorithms exist allowing BNs to be created in such a manner (e.g. Buntine, 1996;
Friedman et al., 2000; Spiegelhalter and Lauritzen, 1990; Zhang et al., 2012). How-
ever, one of the major strengths of BNs is that they do not have to be constructed
in a data-driven fashion. This becomes important when the data is not accessible,
is not suitable, or there is not enough data (Lucas et al., 2004, p205).

A very popular method for constructing BNs is through KA without the aid of
data sets (e.g. Kuikka and Varis, 1997; Przytula and Thompson, 2000; Rumantir,
2003; Falzon, 2006; Chan et al., 2011). These are typically created by interviewing
domain experts with the goal of encoding their knowledge into BN models. These
models can then be used to reason about particular domains and help solve prob-
lems. This approach is often referred to as Knowledge Engineering for Bayesian
Networks (KEBN Korb and Nicholson, 2011), which this thesis refers to as tradi-
tional KEBN to disambiguate with the new approach proposed.

KA differs from the data-driven approach, because when opting for a data-driven
approach to constructing BNs, researchers usually make use of existing commercial
off the shelf software for this task such as Netica (Norsys Software Corp, 2016)
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or BayesServer (Bayes Server Ltd, 2015). When KA is used for BN construction
this is not the case. Rather, the number of ways in which elicitation is undertaken
is quite diverse, with each knowledge engineer having different preferences for
approaching the task of interviewing experts. There are some good textbooks and
research articles that provide advice and discuss best practices for KA (e.g. Milton,
2008; Studer et al., 1998) and specifically for the purpose of BN construction (e.g.
Kjærulff and Madsen, 2013; Korb and Nicholson, 2011). However, there is less
research in developing new approaches using KA to construct BNs, especially
compared to the volume of research on data-driven BN methods.

Despite the common usage of KA to elicit BNs, and the textbooks and journal
articles providing guidance on how best to conduct such elicitation, there is still
little research providing new and improved methods of KA for BNs. Hence, this
research introduced a new, prescriptive technique to help BN practitioners and
researchers alike construct BNs through expert elicitation.

1.3.2. Knowledge Acquisition

Knowledge Acquisition (KA) is the process of modelling and documenting tacit
knowledge from experts, often through interviews, in order to elicit the required
knowledge to construct a model (Simon, 1996, p271). The broad goal is to produce
a useful model which helps people to make decisions. In this way, KA is similar
to Machine Learning (ML) which strives to build models by analysing large data
sets for patterns (Russell and Norvig, 2010). The difference is that KA makes use
of the education and experience acquired by experts to create the model under
construction. Therefore, it stands to reason that KA is often used in situations
where large data sets are unavailable or when the expertise of domain experts is
deemed to be more useful than the available data sets.

The process of KA can take many forms including semi structured interviews, focus
groups, and protocol analysis (Dieste and Juristo, 2011). Some KA tasks may be
completed with only a single interview, while others may involve ongoing meetings
where new knowledge is elicited each time or previous knowledge is refined (Milton,
2008). Features common to most KA sessions are that one or more analysts direct
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the elicitation and initiate discussions with domain experts. Additionally, they
all share the same goal of eliciting knowledge from experts and encoding it into
a model. This ensures that the knowledge persists beyond the employment or
availability of a particular expert and is available to aid in training and decision
making into the future.

As with most choices, using KA to construct a BN in comparison to data mining
has some disadvantages. For example, experts often struggle to convey their know-
ledge such that it is fully comprehensible to the knowledge engineer, or the know-
ledge engineer struggles to understand what is being said by the expert (Milton,
2008). Knowledge elicitation sessions with multiple experts have additional issues,
such as integrating knowledge from multiple, often conflicting opinions (Clemen
and Winkler, 1999). These issues can be overcome by applying formal methods
designed specifically to mitigate them. For example, Onwuegbuzie et al. (2009)
proposes a method for explicitly documenting the level of consensus in a group
and how that level changes over time.

1.3.3. Surveys

This thesis focused on building BNs by administering online surveys rather than
analysing data or interviewing experts. As such, it is important to investigate the
history of surveys to better understand the benefits and concerns associated with
them.

Surveys have historically been used by the social sciences for the purposes of better
understanding a large population by sampling only a representative few (Babbie,
1990, p42). This allows inferences to be made about the broader group of people,
aiding in decisions made when considering their requirements. Of course, by “pop-
ulation”, one may actually mean the literal entire population of a country or the
world, but this is usually not the case. It is more common that the population
of interest is a subgroup of people such as “university students in Australia” or
“people with a family history of cardiac arrest”. By carefully selecting and ques-
tioning a small proportion of people, it is possible to draw inferences about the
broader population under study.
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There is a plethora of research on the survey methodology and how to avoid
common pitfalls (e.g. Andersen et al., 1979; Babbie, 1990; Baker et al., 2014;
Groves and Lyberg, 2010). Bias can be introduced in a number of different ways
calling into question the inferences made from survey data. This is such a common
theme in the field of surveys that the term “total survey error” has been coined
(Andersen et al., 1979; Groves and Lyberg, 2010; Weisberg, 2009) to emphasise
that a large part of running a successful survey is mitigating as many of the possible
sources of bias (i.e. error) as possible.

Historically, surveys have mainly been used for this concept of extrapolating from
a sample to a population:

“Sample surveys are almost never conducted for purposes of describing
the particular sample under study. Rather, they are conducted for
purposes of understanding the larger population from which the sample
was initially selected.” Babbie (1990, p42)

However in recent years, surveys have been finding a new role in research and
industry. In addition to their primary use as a sampling tool, they are also used to
build models that encode expert knowledge, though infrequently. Some examples
are online crowd sourcing “citizen science” projects, which make use of survey
responses to increase our knowledge about the world (e.g. Chklovski and Gil, 2005;
Raykar et al., 2010). Other examples are more akin to taking traditional KA and
considering how it can be augmented by using surveys (e.g. Baker et al., 2014),
as was the case with this thesis. This use of surveys is not about understanding
the population the sample survey subjects represent, but rather extracting the
knowledge that the survey subjects have accumulated in their respective areas.

1.3.4. Summary of Previous Research

This thesis draws on research from the fields of BNs, KA, and the survey method-
ology in order to propose a new method for constructing BNs. This will in turn
enable a wider audience of people to utilise BNs for decision making in their field.
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1.4. Research Methodology

The methodology used to undertake this research was informed by the Design
Science Research (DSR) method, influenced by research by Walls et al. (1992);
March and Smith (1995); Hevner et al. (2004); Peffers et al. (2007); Gregor and
Jones (2007). The general principle is that in addition to the natural sciences (e.g.
physics, chemistry, etc) which study the world, researchers should also strive to
study artificial things produced by humans (artifacts). The study of such arti-
facts results in both knowledge about the specific artifacts under study, but also
knowledge about how best to undertake the future development of other artifacts.

The field of DSR is said to have been pioneered by Herbert Simon with his work
“The Sciences of the Artificial” (Simon, 1969, 1st ed.) and later formalised by
researchers such as Nunamaker Jr and Chen (1990), Walls et al. (1992), March
and Smith (1995), Hevner et al. (2004) and Gregor (2006). The methodology of
DSR is still an active area of research and is undergoing improvements in terms of
evaluation (Venable et al., 2012) and communication of research results (Gregor
and Hevner, 2013).

There were two main artifacts developed during this research project. The first
is a new method for eliciting knowledge from experts in order to construct BNs
using online surveys, termed “Survey Elicitation for Bayesian Networks” (SEBN).
Methods are important contributions because they help facilitate the transform-
ation of user needs into system requirements (March and Smith, 1995), allowing
the implementation of a working system to satisfy those needs. The SEBN artifact
proposed in this research is presented in detail in Chapter 4 and 6. Walls et al.
(1992, p49) stress that this type of research should “provide specific guidance to
the design process through a prescriptive mode”. As such, these chapters present
detailed flow charts and accompanying documentation that together prescribe how
SEBN can be undertaken. Knowledge engineers wishing to implement SEBN in
order to conduct online surveys should be able to do so.

In order to evaluate this method, a second artifact was created. This was an imple-
mentation2 of the method in the form of an online survey system, termed “Bayesian

2Most DSR papers use the term “instantiation”, but this thesis opts for the word “implementa-
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Network Elicitator” (BNE). The online survey was administered for the purposes
of constructing a BN model to help with car insurance risk assessment. Two eval-
uation studies enlisted over 100 participants to answer online survey questions and
combined the responses into a BN. The goal was to have an existing, published
BN (Binder et al., 1997) with which the BN resulting from the evaluation could
be compared. The similarities between the evaluation and the existing networks
are measured using various metrics described in Chapter 5 and Chapter 7.

Various DSR guidelines are followed throughout the thesis, particularly those from
Hevner et al. (2004). Specifically, viable artifacts result from the research (Hevner
et al., 2004, Guideline 1), to solve a relevant problem (Hevner et al., 2004, Guideline
2), and they are rigorously evaluated (Hevner et al., 2004, Guideline 3). The
research produces clear contributions (Hevner et al., 2004, Guideline 4), and the
research is communicated clearly both to researchers interested in building on the
method as well as practitioners wishing to implement the technique or indeed make
use of the implementation from this research (Hevner et al., 2004, Guideline 7).

1.5. Significance

The significance of this research is that it facilitates BNs to be elicited from experts
with the following benefits over traditional interviews:

• Reduced burden for knowledge engineers and researchers alike.

• Encourages a greater number of experts, and hence a greater range of ex-
pertise to be incorporated into the resulting BN.

Previous research on KA makes use of interviews for the purpose of eliciting know-
ledge. This tends to mean face to face individual or group interviews such as
workshops or focus groups. To a lesser extent, KA can be conducted via interviews
using online video chat, phone or some other technology that allows geographically
disperse people to communicate. However whether the interviews are conducted

tion” as it is a common term used in software engineering to talk about realising an abstract
concept in a tangible piece of software. This thesis will use the terms interchangeably where
required, to fit with existing DSR. This distinction will be discussed in greater detail in
Section 3.4.3 (p68)
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face to face or in an online setting, the process of manually interviewing experts
is time consuming. As more people are included in the KA process, it becomes
more difficult to manage the project and incorporate the knowledge from multiple
experts. By allowing the process of elicitation to be conducted via online surveys,
an arbitrarily large number of experts can be included in the KA process without
substantially increasing the burden on the knowledge engineer. Although the ex-
perts must still be recruited and consulted, there is no longer a need to conduct,
transcribe, or analyse interviews with them. This comes at the expense of more
in depth or exploratory interviews with each expert.

In addition to reducing the burden on the knowledge engineer interested in con-
structing a BN, this thesis also proposes methods of reducing the burden on ex-
perts. This is achieved in two main ways. Firstly, each expert is only asked a
subset of all required survey questions. Secondly, the online survey is constructed
in such a way that experts need not be trained in the nuances of BNs in order to
contribute their knowledge as is often the case in KA for BNs.

By enabling more experts to participate, it is hoped that this research encourages
others to opt for methods of KA that do not restrict the number of experts. Al-
though more opinions can be counter productive in some situations (e.g. when a
consensus is required), this does not occur when building a probabilistic model as
that uncertainty is able to be encoded in the resulting model. The uncertainty
caused by disagreement is encoded in the model itself, to truly represent the un-
certainty present in the knowledge of the experts.

1.6. Contributions

This research makes contributions to both theory and practice of KA for BNs.
The following paragraphs explain the specific contributions in these areas.

1.6.1. Contributions to Theory

This research contributes to the field of KA for BNs. Although there is limited
existing research which makes use of surveys for the construction of BNs, they are
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not supported with any theoretical discussion of its benefits. For example, Xiao-
xuan et al. (2007) propose a technique for using surveys to elicit BNs, however
potential pitfalls are not discussed such as the very real potential for their technique
to result in cycles in the resulting BN structure, resulting in an invalid BN. In
addition, the existing approaches require evaluation to determine if they were
indeed a successful alternative to traditional knowledge engineering. To the best of
the authors knowledge, this was the first research which thoroughly and rigorously
investigated the concept of using surveys for this purpose. This thesis investigated
aspects of using surveys to elicit BNs such as resolving cycles in the BN structure,
identifying potential portions of the network which can be optimised, and choosing
the optimal elicitation technique based on the local structure of the network. It
also investigated how to reduce the burden on experts so they are not required
to answer an unreasonably large amount of questions, and integrates differing
opinions of multiple experts into a single BN. These contributions were made by
integrating previous research in the field of the BN construction, KA, the survey
methodology, and crowd sourcing. The result is a novel workflow for eliciting BNs
using online surveys.

1.6.2. Contributions to Practice

The feasibility of the theoretical contributions was evaluated by building an online
system capable of administering surveys which produce BNs. It is released3 under
the GNU GPLv3 license (Free Software Foundation, 2007) to encourage anybody
to make use of it and contribute to its further development. The system was
used in real life conditions, and managed to satisfactorily administer two surveys
consisting of over 100 participants.

1.6.3. Contribution to Methodology

The body of literature concerning the DSR methodology itself is added to at the
conclusion of this research. Contributions were made to the DSR method through

3BN Elicitator is available from https://github.com/bn-elicitator/bn-elicitator
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discussions on the topic of “instantiation validity”. This phenomenon arises when
the “ad-hoc nature in which artifacts are designed contribute to inconclusive and
mediocre findings” (Arazy et al., 2010; Lukyanenko et al., 2014, p322). Section 8.4
(p206) discusses how it applied to this research project, and also proposes addi-
tional considerations to help when conducting DSR for other projects.

1.7. Scope of the Research Project

This research projected focussed on constructing BNs. It presented background
research on the field of KA, and also made contributions to the field of KA, by
using online surveys to perform KA tasks that are traditionally performed using
interviews. However this will be limited to KA tasks that are required in order to
elicit a BN. For example, the KA task of eliciting probabilities receives quite some
attention, however other aspects of KA such as observing experts performing their
role is not the focus of this research.

In order to construct a BN, three main types of information need to be elicited in
sequence: variables to include in the model, relationships between the variables,
and the probability values which are used to parameterise the model. Within the
bounds of BN KA, the project focuses on the final two of these. Both the structure
and the probability elicitation are discussed in depth, and evaluated using empirical
experiments. The ability to elicit variables is not discussed in detail as part of the
workflow presented in this thesis, and thus not evaluated. However, it is briefly
touched on to show how it fits in with the bigger picture in Section 8.7.4 (p216).

The scope of this research did not allow for multiple refine and re-evaluation stages
of the research as is often the case with larger projects. However the concluding
chapter comprehensively discusses future research directions based on the lessons
learned from the evaluation studies (Section 8.7, p214) . This includes discussion
on ideas of how to refine the technique of elicitation, appropriately change the
software system, and conduct further evaluation.
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1.8. Thesis Structure

The rest of the thesis will be dedicated to motivating, describing, and evaluating a
new technique for eliciting knowledge from experts for the purpose of constructing
BNs.

Literature Review (Chapter 2, p21) The literature review begins by discussing
BNs, how they are used, and how they are typically constructed. KA is then
introduced, as is research on the survey method, expert judgement, and combining
expertise from multiple experts. It highlights pitfalls and biases known to arise
when eliciting knowledge from experts.

Methodology (Chapter 3, p57) This thesis draws inspiration from several DSR
theorists. Chapter 3 highlights aspects from Hevner et al. (2004); March and Smith
(1995); Nunamaker Jr and Chen (1990); Venable et al. (2012) which are used to
frame this thesis. The artifacts which form the contributions of this thesis are then
introduced. The chapter also details a set of propositions which this thesis seeks
to address. These propositions are used as the basis of the research evaluation
which is also discussed in the methodology chapter.

Building BN Structure Through Survey Based Elicitation (Chapter 4, p73)
This chapter constitutes (along with Chapter 6) the main contribution of this

thesis: a workflow for the Survey Elicitation of BNs (SEBN). This chapter discusses
the elicitation of BN structures, whereas Chapter 6 looks at eliciting parameters of
a BN. In order to elicit BN structures using online surveys, this chapter explains
what questions are required to be asked during the survey and how responses map
to a BN structure. The chapter explains how the number of questions required
of experts is minimized in two main ways. These involve constraining the total
amount of questions which must be answered in order to build a BN, and only
allocating a subset of these questions to each expert. The chapter concludes by
discussing how to collate multiple responses to each survey question into a final BN
structure. This discussion includes consideration of how to resolve disagreement
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among experts and how to identify anomalies that arise when multiple responses
are collated into a single model.

Evaluating Structure Elicitation (Chapter 5, p103) This chapter discusses an
evaluation study which used an implementation of the workflow from Chapter 4
in order to investigate what BNs resulting from SEBN would look like. In order
to evaluate the resulting network, it was quantitatively compared to an existing
published network. The evaluation also measured how much time was required of
each participant while conducting the survey.

Calculating BN Probabilities Through Survey Based Elicitation (Chapter 6,
p155) This chapter focuses on eliciting the conditional probability tables (CPTs)
which are used to parameterise a BN. The chapter adapts specific techniques from
van der Gaag et al. (1999), Das (2004), and Saaty (1990) in order to mitigate
the problem of combinatorial explosion and the subsequent number of questions
required of experts. The allocation of a subset of questions to each expert and a
method of collating responses from multiple experts is also discussed.

Evaluating Probability Elicitation (Chapter 7, p175) In this chapter, a second
evaluation study is discussed where an online survey was used to elicit the para-
meters of an existing published BN. As with Chapter 5, the resulting BN was
quantitatively compared to an existing network and the results documented. Also,
the time required of participants was investigated.

Conclusions and Future Work (Chapter 8, p191) Concluding remarks are
presented in this chapter including a summary of the thesis and more specific
discussion about the contributions of the thesis to both theory and practice. This
is accompanied by revisiting the propositions introduced in the methodology, and
whether they came to fruition or not. During this research, many avenues of future
work were identified, and these are also documented in this chapter.
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This thesis proposed a new technique for generating Bayesian Networks (BNs) to
address some of the shortcomings with existing approaches. In order to understand
what these shortcomings are and how they will be addressed, this literature review
discusses BNs and how they are typically constructed using either data analysis or
expert elicitation. As this thesis deals predominantly with the expert elicitation
approach, this review continues on to investigate the field of Knowledge Acquisition
(KA). In particular, it is interested with the issues that should be considered when
combining expertise from multiple experts from the field of KA, and multiple lay
people from the field of crowd sourcing. In order to address some of the concerns
with current KA approaches to eliciting BNs, this thesis adopts the online survey
methodology in preference to face to face interviews. Thus, this chapter concludes
with a review of the survey methodology and how it relates to the field of KA.

2.1. Computer Models for Problem Solving

A BN is a type of computer model which can be employed to solve problems. To
better understand why one would choose a BN to solve a particular problem, this
section first discusses computer models in general.

The Oxford English Dictionary defines a model as:

“A simplified or idealized description or conception of a particular sys-
tem, situation, or process, often in mathematical terms, that is put
forward as a basis for theoretical or empirical understanding, or for
calculations, predictions, etc.” Oxford (2016)
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To clarify this somewhat vague definition, it is helpful to look at a common example
of a model, e.g. a model train. A model train hides the complexity of a real, full
size, working locomotive in order to show how a train works fundamentally. Thus,
it is a simplified or idealized implementation of a particular system (a train) which
allows for a better empirical understanding of how a train works. The concepts
which are simplified or abstracted away include that of the internal combustion or
steam engine that drives the wheels, the braking mechanisms, and various other
ideas. The abstraction is still very useful though, because it helps children to
understand how a train works in the real world, how the locomotive travels on two
rails in order to move, and how several carriages can be chained together to make
a longer train.

The same applies to computer models, i.e. algorithms or software which provide an
abstraction over a set of complex concepts, to help reason about and understand
them. Consider the example of speech recognition in humans, for which computer
models have been used to help understand. Despite physiologists and psychologists
not having a comprehensive understanding of the complex machinery in a human
brain which performs speech recognition, computer scientists in the field of artificial
intelligence (AI) have not been deterred. One particularly successful computer
model (and one of the earliest applied to AI) used to help computers recognise
speech is an artificial neural network (ANN, first proposed by Mc Culloch and
Pitts, 1943). ANNs provide useful albeit extremely simplified abstraction of the
way a real brain works. As such, these simplified or idealized ANN computer
models have had good success in helping people conduct speech recognition using
a computer.

2.1.1. Constructing Computer Models

There are two main ways in which models are constructed, through analysing
large historical data sets, or through knowledge acquisition1. In addition, there is

1Constructing models is one thing, but maintaining them into the future, adapting to new
and changing situations, or refining them when new information comes to hand is equally
important. This section will deal specifically with construction of models, but many of the
same problems and solutions are relevant to maintaining the models.
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a third option which is to combine analysis of historical data sets with KA. The
choice of which method is used is primarily influenced by the type of model which
is required in a given situation. As a secondary consideration, some models can be
constructed by either approach, so it becomes a decision which needs to be made
by the model builder(s) on a case-by-case basis. Primarily though, the choice of
how to build a model is constrained by the type of data available.

Constructing Models Using Historical Data

Techniques for constructing models by analysing historical data fall under the field
of Machine Learning.

Machine Learning is the field of scientific study that concentrates on in-
duction algorithms and on other algorithms that can be said to “learn.”
(Kohavi and Provost, 1998)

Machine Learning (ML) deals with algorithms or software designed to identify
patterns in a set of data, with the purpose of being able to make useful predictions
about unseen data. As with most things, there are many and varied definitions,
but this will suffice for the purpose of this research2. Once patterns have been
identified in a data set, they can often be encoded into a computer model to help
make sense of new, previously unknown data.

Constructing Models Using Knowledge Acquisition

Knowledge Acquisition (KA) is the process of a human expert imparting their
knowledge and experience into a model. This is useful in situations where historical
data is unavailable, inappropriate, or insufficient. It is also appropriate when the
model building process is more exploratory, and the decision as to what is required
may not be known until consultation with experts is conducted. Section 2.3 will
provide a much more comprehensive view of KA in general, and Section 2.2.3

2Note that while this literature review refers to Machine Learning, there is a sister discipline
termed Data Mining, which focuses on similar goals. The task of Data Mining can be seen
as the broader process of knowledge discovery of which ML is one component (Kohavi and
Provost, 1998).
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discusses KA specifically in relation to the construction of BNs, which is the focus
of this research.

Compared to ML, KA research tends to focus more on general approaches to
eliciting knowledge from experts. There are some publications on the specifics of
KA for constructing specific types of models (e.g. Kjærulff and Madsen, 2013, for
BNs). However these are amongst the minority as compared to those that only
provide direction for conducting KA in general, without specifying the type of
model to construct (e.g. Milton, 2008).

The research in this thesis will provide a KA workflow specific to BNs. Specialising
in this way means that the workflow can contain very specific optimisations for
the BN use case, without making compromises in order to stay generic.

2.2. Bayesian Networks (BNs)

This section focuses specifically on one model - the Bayesian Network (BN), which
is the type of model that this thesis contributes to. The following sections will
introduce what a BN is, why one would choose to use a BN, and when one may
choose not to make use of them. These are then followed by a review of the ways
in which BN models are constructed. This is used as a motivation to propose a
new technique for creating BNs presented in this research.

2.2.1. What is a BN?

BNs are a type of computer model that facilitate probabilistic reasoning. They
have a graphical component, which can be seen in Figure 2.1, and each node in
the graph has a table of probabilities associated with it known as a Conditional
Probability Table (CPT), which is not represented graphically. A BN is a way to
represent a factorised joint probability distribution. To illustrate this concept, con-
sider the (non-factorised) join probability distribution of four variables of interest
in a simplified model of smoking and cancer. The model encodes the probabil-
ity that a patient is subjected to 4 different conditions: that they smoke, have
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Figure 2.1.: Example BN modelling the relationship between smoking, radiation,
cancer and fatigue.

been exposed to radiation, have cancer and suffer fatigue. The joint probability
distribution which this represents is:

Pr(Smoking,Radiation, Cancer, Fatigue)

The first three of these variables have two states (true or false) and the fourth
variable, fatigue, has three (low, medium, or high). This results in a total of 24
(2×2×2×3) possible combination of scenarios a patient could be in. Some are more
likely than others, and as such, the probability of each 24 combinations needs to be
calculated for this distribution to be useful in a model. As the number of variables
increase, the total number of probabilities required to parameterise the model
increases exponentially. Thus, it is usually desirable to factorise this distribution
to make it more manageable. Factorising joint probability distributions is similar
to factorising other quantities in mathematics. It is the process of decomposing
the joint probability into a series of conditional probabilities, than when multiplied
together, result in the original joint distribution.

Using the chain rule of probability, this joint probability distribution can be trans-

25



Chapter 2 Literature Review

formed into the following conditional probabilities:

Pr (Smoking,Radiation, Cancer, Fatigue) =

Pr(Smoking)×Pr(Radiation|Smoking)×Pr(Cancer|Radiation, Smoking)×

Pr(Fatigue|Cancer,Radiation, Smoking) (2.1)

The total number of probability values required to represent this distribution is
now 2+(2×2)+(2×2×2)+(3×2×2×2) = 38. This is in fact larger than the 24
probabilities required for the join distribution, but it becomes easier to factorise
in this form. To illustrate, consider the fatigue variable. If there is no information
about the patient, then the model will make a best guess estimate about how likely
it is that they are fatigued. However, if someone was to say that they smoke, then
the belief that they suffer fatigue would increase - as smoking often causes cancer
and fatigue is a common symptom of cancer. If instead of informing about their
smoking habits, they were instead known to have cancer, the belief in them being
fatigued would increase for the same reason.

However, if it was already known that the patient had cancer, and it subsequently
became known that they also smoke, it would not change the belief in that person
being fatigued. This is because the only mechanism with which smoking habits
informed the belief that the patient was fatigued is because it increased their
chance of cancer. If it was already known that they have cancer, the knowledge
about smoking doesn’t increase or decrease the belief that the patient is fatigued3.

This example illustrates the conditional independence property between the causal
variables in a BN. Fatigue and smoking are independent to one another conditioned
to the fact that the patient has cancer. Additional information about the smoking
habit of the patient will not change the belief of the patient being fatigued:

3This may not be true, it may be that smoking in itself directly causes fatigue. However,
as models are simplifications of complex phenomena, the decision has been made to only
model the effect of smoking on cancer, not its effect on fatigue. This is an example of a
subjective decision that is often made when building BNs or other models, and which requires
careful consideration. However, as this is an example to illustrate factorising probability
distributions, this consideration will be ignored for now.
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Pr(Fatigue|Smoking, Cancer) = Pr(Fatigue|Cancer)

If the patient doesn’t has cancer though, then the two variable are dependent to
one another, i.e. the smoking habit of the patient will help to determine the change
of the patient being fatigued.

More generally, variable A and C are “conditionally independent given B” if
Pr(A|B,C) = Pr(A|B). Note how the distribution of Pr(A|B) has less para-
meters than Pr(A|B,C), which makes it easier to model. Therefore, if the cases
of conditional independence were identified and factorised out of the distribution
of Eq. 2.1, the whole model will become simpler and easier to manage. The end
result is that Eq. 2.1 can be factorised into the more manageable:

Pr(Smoking,Radiation, Cancer, Fatigue) ≈

Pr(Smoking)× Pr(Radiation)× Pr(Cancer|Radiation, Smoking)×

Pr(Fatigue|Cancer) (2.2)

Note the similarity between Eq. 2.2 and the network in Figure 2.1. Each conditional
probability implies a directed arc in the graph, so Pr(Fatigue|Cancer) means there
is a directed arc from Cancer → Fatigue in the BN.

In the basic example shown here, there was only four variables, yet the number of
parameters the model needed was reduced by 25% from 24 to 18. This reduction
quickly improves as more variables and arcs are added, because the number of
probability values required to represent a joint probability distribution increases
exponentially with the number of variables. As such, BNs have become a popular
way to model such distributions.
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2.2.2. Considerations When Choosing a BN in Preference to
Other Models

Nicholson et al. (2008, p35) discuss several features of BNs that make them a good
choice of model for many purposes:

“BNs provide a clear graphical structure with a natural causal inter-
pretation which is intuitive”

This fact was leveraged by van der Gaag and Helsper (2002) in eliciting a BN, as
their experts did not have formal training in probability theory. Causal interpreta-
tions are important to encourage users to trust the model when using it. If a model
is going to be used to recommend some course of action that requires resources to
be committed, then it is helpful to know the justification for it (Buchanan et al.,
2006, p97). Additionally, when enlisting experts to help construct the models (Sec-
tion 2.2.3) it would be better if they could visualise and comprehend the model
they are producing. Experts enlisted to construct a model, and those who will
use the resulting model for problem solving, require trust in that model for which
intuitive interpretations help.

“BNs provide good estimates even when some predictors are missing”

BNs are able to adapt to situations with missing information, given their probabil-
istic nature. This is important, as missing data is a significant problem, and most
data analysis processes were not designed with missing data in mind (Schafer and
Graham, 2002).

“Separation of prior distributions from other parameters, allowing ad-
aptation to new populations”

When new data sets become available, it is possible to re-learn the conditional
probabilities which form the parameters of an existing network, as long as the
structure of the network (the dependencies between variables) is retained.

“BNs can incorporate additional data including subjective expert know-
ledge”

There are many computer models that can be built by analysing historical data,
but only a small number can be built in the absence of these data sets.
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Of course, with any decision about which model to make use of to solve a given
problem, there should be some contra-indications that help guide when not to use
a particular solution. Despite BNs versatility and the fact they have successfully
been applied in many areas, this does not mean that they are always the best tool
for the job.

Some researchers have disputed the conclusions discussed above. The fact that
“BNs provide good estimates even when some predictors are missing” is chal-
lenged by the results of building the HEPAR II network (Onìsko, 2008), where
performance was found to decrease linearly with the amount of noise in the data
used to train the networks.

Adapting the structure of a BN in light of new data is something for which there
is not sufficient research into (Jensen and Nielsen, 2007, p214). This is refuted by
Korb and Nicholson (2011, p357) who suggest that using the CaMML approach
(Wallace and Korb, 1999) would enable adaptation of BN structures. Despite this
refutation, it still appears that the adaptation of structure is not able to be dealt
with in a manner similar to that of probabilities, whereby new information gradu-
ally changes the model. Rather, any change in structure would require a new set
of parameters, which could be completely different from the previous parameters.
Thus any change to the structure may run the risk of making redundant the work
which was previously done to elicit or calculate the probabilities.

2.2.3. Typical Ways in Which BNs are Constructed

There are three main steps in building any BN

1. Identify the variables to be included in the network.

2. Decide on the structure of the network.

3. Parametrise the CPTs of each node.

They are usually done in this order, because the later cannot be completed without
the former first being completed. It is very important that the network structure
is completed before the CPTs. For example, consider a network structure which
is incorrect. Considerable time and effort may be spent calculating the CPTs for
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each node, only to find that when the structure is reorganised, this information
becomes outdated and irrelevant, and new CPTs are required. Thus it is important
to get the structure of the network correct first.

As was discussed briefly in Section 2.1.1, there are two main ways in which com-
puter models are built: algorithmically by using ML to analyse historical data
sets, or manually using expert elicitation. Construction of BNs is no different, and
for each of the three main steps of creating a BN described above, either historical
data or expert elicitation approaches can be used. The following section will dis-
cuss approaches to creating BNs that utilise historical data sets. However, unlike
some other predictive tools constructed by analysing historical data, the absence
of suitable data does not preclude a BN from being used to solve a problem. The
next section will discuss how expert knowledge elicitation can also be used to pro-
duce a BN. Finally, there is no shortage of approaches which combine both data
and experts in a hybrid method to construct BNs and these will be mentioned
below.

Constructing BNs Using Historical Data

Historical data about a particular problem domain can be used to learn the rela-
tionships between variables, based on statistical properties of the data set. The two
general methods are search and score based, and constraint based (Kjærulff and
Madsen, 2013). Search and score based methods produce several complete BNs,
which are then assigned a score ranking how closely they represent the distribution
of the available data (e.g. Chickering, 2002). Constraint based approaches start
with individual variables and incrementally build an entire BN by adding new rela-
tionships as they are identified in the data. They apply “knowledge of conditional
independencies to make inferences about what causal relationships are possible”
(Korb and Nicholson, 2011, p184). Examples of these inductive learning algorithms
include the search and score based K2 algorithm (Cooper and Herskovits, 1991)
and the constraint based PC algorithm (Spirtes et al., 2000).

Some requirements for the use of historical data to produce BNs is that it exists,
is accessible, is suitable, and that there is enough (Lucas et al., 2004, p205). Non-
existent data is a common issue when a BN is being constructed for a once off
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event or process, such as to help make environmental policy decisions (e.g. Chan
et al., 2010), or when the required data has never been collected (e.g. Pellikka
et al., 2005). Inaccessible data arises when there are privacy or other concerns
which prevent data being used, such as with medical records. Unsuitable data
arises when there is indeed data that has been collected, but it cannot easily
be processed analytically, such as in-depth interviews or multimedia data, or it
does not include the variables for which the BN aims to encode (Lucas et al.,
2004, p205). Finally, many techniques require large amounts of data in order to
confidently identify the parameters of a network, and the available data sets may
not be large enough (Lucas et al., 2004, p205). The following section introduces
expert knowledge elicitation as an alternative tool for constructing BNs when any
of the above conditions arise.

Constructing BNs Using Expert Elicitation

When no suitable data is available, or when the knowledge engineer deems it ap-
propriate, then knowledge elicitation can be used instead of historical data to con-
struct BNs. Traditional “Knowledge Engineering for Bayesian Networks” (KEBN)
usually involves interviewing experts to transfer their knowledge and experience
into a BN. There are many good textbooks on the topic of KEBN, including
Kjærulff and Madsen (2013) and Korb and Nicholson (2011).

The three steps described earlier, identifying variables, defining structure, and
parameterising CPTs are also performed in KEBN. As with the data driven ap-
proach, they should be conducted in sequence, in order to prevent changes to the
structure invalidating previously calculated CPTs. The process is based on that
of KA, which has been used successfully for decades to construct expert systems
and other models (e.g. Shortliffe et al., 1984), and which will be discussed further
in Section 2.3.

KEBN is usually closer to constraint rather than search and score based methods
discussed above, with a single BN being constructed after experts identify the
relevant relationships. There are exceptions to this rule, for example Pellikka et al.
(2005) effectively produced eight different networks which were then combined
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together based on scores assigned to each arc. The difference from the approach
using historical data is that the decision to include a relationship in the model is
based on a persons expertise, rather than conditional independence relationships
identified in the data.

KEBN involves the knowledge engineers interviewing each of the experts. This
can be either in one-on-one interviews (e.g. Kuikka and Varis, 1997; Pollino et al.,
2007), or in workshops with multiple experts (e.g. Chan et al., 2010), and is more
often than not iterative. If one-on-one interviews are used, a large number of in-
terviews are required, and the results from each one must be integrated by the
knowledge engineers. If workshops or focus groups are conducted, then the know-
ledge engineers need to organise a single time when all experts can come together
to discuss the BN. It also involves dealing with potential sources of bias discussed
further in Section 2.3.4.

Constructing BNs Using a Hybrid Between Historical Data and Expert
Elicitation

The BN literature also includes methodologies advocating mixing algorithmic and
KEBN approaches. Historical data is good for when there is a lot of data available
for which to identify patterns within, while KEBN is good when there is a wealth
of expertise which can be elicited from experts in a field. It is only natural that
hybrid approaches which blend the best of both have emerged. However, it has
been noted that blindly combining multiple sources of information may not be
the best method, and principled methods should be developed to deal with such
combinations of data (Druzdzel and Díez, 2003).

There are a few different ways to approach producing a hybrid method. Although
it is conceivable to use an algorithm to initially produce a network structure which
is then refined by experts, almost every approach focuses on the more practical
alternative of asking experts to produce some prior information or network struc-
ture, then refine that by analysing historical data (e.g. Flores et al., 2011; Gambelli
and Bruschi, 2010; Heckerman et al., 1995).

An approach which asks an expert to produce the structure, and then making use

32



2.2 Bayesian Networks (BNs)

of data for calculating the CPTs is put forward by Druzdzel and Díez (2003). The
hybrid approach put forward by Gambelli and Bruschi (2010) asks the expert to
place theoretical constraints on possible relationships. From here, an algorithmic
approach is used to elicit a structure which adheres to those constraints. A more
Bayesian approach is proposed by Heckerman et al. (1995), whereby an expert
specifies the structure of a BN, and that structure and a data set are used as
prior knowledge to “correct” the proposed BN. The final BN in this case tends
to resemble the network the expert proposed, and should therefore have meaning-
ful causal relationships defined by an expert, as well as interesting relationships
identified by the algorithm which the expert may not have known about.

2.2.4. Eliciting the Structure of a BN From Experts

Once all of the variables of interest have been identified (a topic which is beyond
the scope of this thesis), then they must be combined into a BN structure. The way
in which experts are interviewed in order to elicit this structure varies greatly, as
evidenced by the plentiful research into using BNs to solve specific problems (e.g.
Martin et al., 2005; Pollino et al., 2007). This section will discuss some common
techniques for eliciting the structure of a BN.

Causal Relationships Although arcs in a BN technically represent conditional
(in)dependence, many practitioners treat them as something more akin to causal
relationships (Heckerman, 1997; Spirtes et al., 2000). Figure 2.2 shows a frag-
ment of the BN from Binder et al. (1997) which has the causal relationships:
V ehicleAge→ V alue→ Theft. As with many causal relationships, it is also true
that these causal relationships also encode the correct conditional independence
relationship between the three variables. That is, Theft is conditionally independ-
ent of V ehicleAge if the V alue of the vehicle is known. Thus, it is preferable to
consider the option of causal arcs as they are the simplest type of relationship to
reason about (Korb and Nicholson, 2011; Kjærulff and Madsen, 2013).

Parent Divorcing One of the common modelling mistakes described by Korb and
Nicholson (2011, p319) is to specify too many parents for a given node. This causes
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Vehicle
Age

Value Theft

Figure 2.2.: Example of causal arcs which also represent the correct conditional
independence relationship between the three variables.

W X Y Z

A

(a) Many parents, causing a potentially
large CPT for the child node A.

W X

Y Z

A

M

(b) Although another variable and arc is
introduced, the overall complexity of
the BN is reduced.

Figure 2.3.: Example of parent divorcing.

the size of the CPT for that node to increase dramatically, making it harder to
elicit accurate probabilities. Olesen et al. (1989) proposed a solution called parent
divorcing, advocated by both Korb and Nicholson (2011, p319) and Kjærulff and
Madsen (2013, p192). This is shown by “introducing an intermediate node that
summarizes the effect of a subset of parents on a child” (Korb and Nicholson, 2011,
p319). An example of parent divorcing is shown in Figure 2.3. Even though it
results in an extra node and an extra arc in the network, it substantially reduces
the number of parameters required for the child nodes CPT.

BN Idioms In the same way that Gamma et al. (1994) famously proposed soft-
ware developers make use of design patterns to help solve recurring problems,
Neil et al. (2000) propose the use of idioms as “a library of patterns for the BN
development process” (Neil et al., 2000, p14). Instead of asking about specific con-
ditional independence relationships between variables, knowledge engineers can try
to identify a suitable high level idiom to describe the relationships between certain
variables. For example, the Definitional/Synthesis Idiom dictates that multiple
parent variables together define the state of a child variable. For example, in Fig-
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Temperature Wind Chill

Apparent
Temperature

Humidity

(a) Definitional/Synthesis Idiom

Measured
Distance

Measurement
Accuracy

Actual
Distance

(b) Measurement Idiom

Figure 2.4.: Examples of two of the five idioms proposed by Neil et al. (2000).

ure 2.4a the Apparent Temperature node is wholly defined by the Temperature,
Humidity, and the Wind Chill. If a node depended on all three parents, then
introducing the Apparent Temperature node would be a good way to divorce the
parents. Another example is the Measurement Idiom whereby a variable repres-
enting an imperfect measurement is explicitly modelled as uncertain in the BN
by introducing a variable to model the accuracy of the measurement instrument
(Figure 2.4b). Both of these examples, as with the other idioms proposed by Neil
et al. (2000) tend to arise in many situations when modelling BNs.

Specifying BN Arcs via an Adjacency Matrix Xiao-xuan et al. (2007) and
Flores et al. (2011) both present methods which asked experts to fill in an n × n
adjacency matrix where n is the number of variables and each cell denotes one of
the possible Parent → Child relationships in the resulting BN. Xiao-xuan et al.
(2007) directly combined the results of multiple experts, and where the majority
of experts agreed a network existed, an arc was added to the BN. The approach
by Flores et al. (2011) is a hybrid learning algorithm where entries in the matrix
correspond to priors feed into an algorithm for inducing the BN structure. These
approaches require experts to consider n2 cells in the matrix which can quickly
become unmanageable.

Variable Classes Kjærulff and Madsen (2013) present a technique for constrain-
ing the possible relationships that need to be investigated by a knowledge engineer
and experts during elicitation. This is done by assigning variables to one of four
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classes: Background, Mediating, Problem, or Symptom. These are shown in Fig-
ure 2.5 including the dependencies they exhibit. If one is to assume that the arcs
in a network are causal, then there is no need to model a symptom variable having
a causal influence on a problem variable in the same BN. Although it is possible
to conceive of situations when this may arise, it is worthwhile applying this sim-
plifying modelling assumption in order to reduce the number of arcs that could
possibly be added to a BN.

Figure 2.5.: Four general classes of variable, and the logical dependencies between
them proposed by Kjærulff and Madsen (2013, p152-154).

2.2.5. Eliciting the Probabilities Required for a BN

CPT elicitation is generally considered the most time consuming part of BN eli-
citation (Druzdzel and van der Gaag, 2000). This is due to the size of a CPT
increasing exponentially with the number of parents to condition on. As a result of
this combinatorial explosion, when eliciting large CPTs using historical data, large
amounts of data is required. When eliciting CPTs from experts, large amounts of
time is required. Buntine (1991) describes the problem as follows:

“While full conditional joint distributions are more general than any
other model, their specification requires an exponential number of para-
meters. When estimating parameter values from data, this can be a
severe problem as it is when trying to elicit the same probabilities from
an expert. One way around this is to introduce approximate distribu-
tions of lower dimension” (Buntine, 1991, p58)
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Figure 2.6.: Example of a factorised PET requiring 50% of the probabilities than
a CPT (adapted from Friedman and Goldszmidt, 1999, p4).

In addition to combinatorial explosion, Jenkinson (2005) discusses the additional
problem of bias and errors that arise when asking human experts to judge probabil-
ities. This section discusses specific techniques for eliciting CPTs by approximating
distributions of lower dimensions and leaves the discussion of bias and errors due
to human judgement to Section 2.3.4 (p46).

Probability Estimation Trees (PETs) By representing a CPT as a probability
tree instead of a table, it can more easily be factorised, reducing the number
of parameters required to represent it. Taking advantage of the so called “local
structure” of a BN node (compared to the global structure of an entire BN) can
result in a reduction in the number of probabilities requiring elicitation. Shown
in Figure 2.6 is an example of a factorised PET requiring 50% of the parameters
of its non-factorised counterpart. PETs have been used to simplify CPTs when
reasoning with already existing BNs (Martínez et al., 2002), as well as to improve
the probabilities learnt from data (Friedman and Goldszmidt, 1999). However
applying PETs to the task of eliciting CPTs from experts has received less research
attention.

Analytic Hierarchy Process Yager (1979); Monti and Carenini (2000); Chin
et al. (2009); Hughes (2009) all applied the Analytic Hierarchy Process (AHP,
Saaty, 1977) to the task of probability elicitation. AHP is used to perform pairwise
comparisons between two variables. Only two pieces of information for each pair
are required:

1. Which variable is more important
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2. The ratio of how much one variable is preferred over the other, as a number
between 1 and 9

With this information, Yager (1979) proposed a method of eliciting probability
values of the form Pr(A) from experts. Instead of an expert having to compare
and reason about all states of A at once, especially when n is large, they need
only compare two probabilities at a time to elicit which is more likely and how
much more likely. Combining each of these pairwise comparisons results in a set
of probabilities which should be coherent and require less cognitive effort from the
experts.

More recent work by Chin et al. (2009) also made use of pairwise comparisons to
elicit probabilities, this time in the context of BNs. Their approach is similar to
that of Yager (1979), with the difference that they are interested in conditional
probabilities of the form Pr(A|B,C) rather than the simpler Pr(A). They based
their work on the simplifying assumption introduced by Kim and Pearl (1983)
that Pr(A|B,C) ≈ α × Pr(A|B) × Pr(A|C) where α is a normalizing constant.
However, Kim and Pearl (1983) explain that this assumption only holds in certain
situations. Given that Chin et al. (2009) did not take this limitation into account,
more work is required to determine if their approach is suitable for eliciting CPTs.

Weighted Sum Algorithm

Das (2004) proposed the weighed sum algorithm as another approach to ease the
burden of eliciting CPTs from experts. It relies on excluding conditional probab-
ilities that seem unnatural and instead interpolating them from more meaningful
probabilities. This is done by first asking experts to specify the set of parent states
which make the most sense. These are termed Compatible Parent Configurations
(CPCs). Probabilities for each of the child node states are then elicited conditioned
on each of these CPCs, rather than on every possible combination of parent states.
In addition, the relative weights of each parent are elicited indicating which par-
ents have the greatest influence on the child. From this information, the remaining
conditional probabilities are calculated as:

38



2.2 Bayesian Networks (BNs)

Pr(A = a|X = x, Y = y, Z = z) ≈ wx × Pr(A = a|CPC(X = x))+

wy × Pr(A = a|CPC(Y = y)) + wz × Pr(A = a|CPC(Z = z))

where wi is the weight of parent i relative to the other parents, in terms of influence
on the child variable. To illustrate, take the car insurance network (Binder et al.,
1997). The CarValue variable is influenced by Mileage, VehicleAge and CarType.
If the entire CPT was to be elicited directly, then the following question would
eventually need to be answered:

“What is the probability of the cars value being between $10k and $20k
if it has been driven over 100,000km and it is a new hatchback?”

Otherwise known as Pr(CarV alue = 10k − 20k|Mileage > 100k, V ehicleAge =
new,CarType = hatchback). However it is unlikely that a new car would have
been driven 100,000km. As such, asking this question is likely to cause some
confusion as the experts are being asked to assess a situation that they likely have
never confronted, nor could they reasonably make sensible guesses at a probability
value for this event. Applying the weighted sum algorithm, only the set of parent
states which make sense to the expert would be elicited. For this example, the
values requiring elicitation are:

• CPC(Mileage > 100k)

• CPC(V ehicleAge = new)

• CPC(CarType = hatchback)

• wMileage

• wV ehicleAge

• wCarT ype

• Pr(CarV alue = 10− 20k|CPC(Mileage > 100k))

• Pr(CarV alue = 10− 20k|CPC(V ehicleAge > new))

• Pr(CarV alue = 10− 20k|CPC(CarType = hatchback))
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The assumption behind the weighed sum is that each of these values in itself
represents a coherent question that an expert can reason about. For the CPC
elicitations, they need to explicitly choose situations that seem reasonable, such
as the most likely VehicleAge and CarType if the Mileage > 100k. The relative
weights are calculated by asking which of the three parents influence CarValue
the most. The end result is three probability elicitations, each conditioned on a
different CPC. Thus, they are only ever conditioned on sets of variables which the
expert believes to be sensible.

The weighted sum algorithm results in a reduction (except for very small CPTs -
e.g. 4 values) from sc ×

∏n
i=1 spi to ∑n

i=g1(spi + spi × sc + 1) − l, where sc is the
number of states the child node can take, spi is the number of states parent i can
take, n is the number of parents, and l is the number of parent configurations
which are the same.

Fragment of Text and Probability Scale To address the slow rate at which
experts are able to elicit large numbers of probabilities, van der Gaag et al. (1999)
proposed a scale to use in place of eliciting specific probabilities. This technique
has also been advocated by Korb and Nicholson (2011). Figure 2.7 shows the seven
different options on the scale which are shown to experts, and a human readable
label explaining what each item on the scale represents. van der Gaag et al.
(1999) found that this increased the rate at which experts could elicit probabilities,
and experts were purported to find it simpler than other methods of probability
elicitation they had used before.

Figure 2.7.: “The Fragment of Text and Probability Scale for the Assessment of
the Conditional Probability” adapted from van der Gaag et al. (1999).
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2.2.6. Summary of BNs

BNs have seen continued use as problem solving tools in a variety of disciplines.
This section described in detail what a BN is and how they are used. They can
be created by analysing historical data or by expert elicitation, with this thesis
proposing a new expert elicitation approach. The literature is rife with several
techniques for eliciting the structure and the probabilities of a BN from experts.
One thing that all these techniques have in common is that they were conceived to
address some sort of problem that arises when eliciting knowledge from experts.
Another thing they have in common is that they require a knowledge engineer, and
usually face to face interviews with experts. The following section will investigate
how these face to face interviews usually take place, and issues that tend to arise
when conducting such elicitation sessions.

2.3. Knowledge Acquisition

The concept of expert elicitation discussed in the previous section is essentially
synonymous with the field of Knowledge Acquisition (KA). A useful definition of
KA is:

“The task of giving an expert system its knowledge (i.e., eliciting and
codifying it)” (Buchanan et al., 2006, p97)

Although this is able to be done via machine learning, the term KA predominantly
refers to a task that is conducted by knowledge engineers4.

KA was traditionally used for constructing expert systems (ES), which are “com-
puter programs that exhibit some of the characteristics of expertise in human
problem solving, most notably high levels of performance.” (Buchanan et al.,
2006, p87). They represent a quite explicit and tangible representation of an ex-
perts knowledge in the form of a computer model. As such, the early attempts

4Note that this research uses the terms KA and expert elicitation interchangeably. Another
term synonymous with KA in the literature is knowledge elicitation. This research prefers
acquisition, in order to prevent confusion when using the acronym KE to refer to “Knowledge
Engineering” (which includes KA as a sub-task).
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to acquire knowledge from experts was seen as very much a transfer of knowledge
from the expert to a computer model (Studer et al., 1998). However, as expert
systems became more popular, more complex, and harder to construct, the task
of KA shifted to modelling the thought process of the expert (Studer et al., 1998).

After proving worthwhile in the construction of expert systems, KA has sub-
sequently found favour in the construction of many other type of computer models.
For example, BNs often use expert elicitation in order to be constructed (e.g. Las-
key and Mahoney (1997); Henrion (1987); Mahoney and Laskey (1996); Xiao-xuan
et al. (2007)), as do ontologies (e.g. Fernández-López et al., 1997), as well as stat-
istical, mechanistic, and other forms of probabilistic models (Krueger et al., 2012).

2.3.1. Relationship Between KA and Knowledge Engineering

KA is one task in the broader field of Knowledge Engineering (KE), a term which
defines the entire process of building a computer based solution to a problem.
KE encompasses the whole process from planning, requirements gathering, model
building, implementation of a computer system, training, and maintenance (Eriks-
son, 1992). KA is usually concerned with the requirements gathering and model
building phases of KE. However, there is not always a distinct separation between
KA and KE, given KA forms such an integral part of KE (Eriksson, 1992, p99).

The process of KE is not dissimilar to the field of software engineering (Eriksson,
1992), where careful thought is put into how a system will be built and maintained,
before work is begun on building it. Indeed, Mahoney and Laskey (1996) and
others make heavy usage of the relationship to software engineering in order to
describe how KE can be used to construct BNs.

2.3.2. Techniques used in KA

Hoffman et al. (1995) and Dieste and Juristo (2011) each provide comprehensive
taxonomies of various techniques used in KA, organised into a hierarchical manner.

Hoffman et al. (1995) describes tens of different KA techniques, each of which is
categorised into one of three broad categories:
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1. Analysis of the tasks that experts perform: “What do experts usually do?”

2. Various types of interviews: “What do experts say they do?”

3. Contrived techniques: “What do they do when they are constrained in some
way?”

A more recent taxonomy proposed by Dieste and Juristo (2011, p286) and based
on that of Hoffman et al. (1995) has the following activities at the top of their
hierarchy:

1. Introspection & observation

2. Interviews

3. Contrived techniques

4. Questionnaires

5. Picking from a list of attributes

6. Prototyping

7. Scenario analysis

8. Diagramming

Note that the first three (introspection & observation, interviews, and contrived
techniques) correspond to the three categories from Hoffman et al. (1995). They
also are broken down into more specific tasks by Dieste and Juristo (2011). The
remaining five categories (questionnaires, picking from a list of attributes, proto-
typing, scenario analysis and diagramming) do not have any sub categories in the
Dieste and Juristo (2011) article.

The choice of which technique to use is highly dependent on the context of the
KA project, such as what needs to be elicited, who the experts are, what they
are familiar with, etc. However, there has been mounting evidence that the first
category “Analysis of the tasks that experts perform” is not as successful as the
other two (Hoffman et al., 1995, p144). As for the distinction between interviews
and contrived techniques, it is not quite as settled. Hoffman et al. (1995, p144)
concludes that in many circumstances, contrived techniques are more beneficial.
However, the more recent and comprehensive analysis performed by Dieste and
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Juristo (2011, p299) came to the opposite conclusion, suggesting the evidence
points to (structured) interviews performing better than contrived techniques in
the majority of cases. It seems most likely that the actual finding of which tends
to be more beneficial will depend on the domain being modelled.

Empirical research which makes use of KA tends to do so by combining multiple
techniques from these papers. A typical example may be to use an unstructured in-
terview to get a broad understanding of a domain and build an initial basic model,
then follow up with more structured interviews in order to refine this model. Al-
ternatively, one might start with individual interviews with multiple experts, then
culminate in a group session with all experts to clarify any unresolved differences
(as advised by McGraw and Seale, 1988).

As discussed previously, BNs are regularly constructed with KA. Of the BNs con-
structed via KA, they almost exclusively use interview techniques such as work-
shops or focus groups. This thesis focuses more on contrived techniques, delivered
via surveys.

2.3.3. Reliability and Validity in Expert Judgement

Two key concepts in the field of KA and indeed most scientific endeavours, is that
of reliability and validity.

“[Reliability] concerns the extent to which an experiment, test, or any
measuring procedure yields the same results on repeated trials” (Car-
mines and Zeller, 1979, p11)

Incorrect judgements can be made due to natural variance in the phenomenon
being discussed (true variance) or by an error made by the expert answering ques-
tions, independently of the true variance (error variance). The more error variance
there is, the less reliable an instrument is (Guilford, 1978). For example, consider
multiple experts all asked to estimate the weight of a ball, each giving different
responses in a seemingly random pattern. In this case, it is reasonable to assume
there is no true variance, as the weight stays constant, and all of the differences
can be explained solely by error variance. As such, asking the question to several
experts is an unreliable instrument for weighing the ball.
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Figure 2.8.: Visualization of reliability vs validity: The centre of the target is the
“true” value being measured with imperfect tools, and each imperfect measure-
ment is a black dot on the target.

Validity is different to reliability, but equally important:

“An indicator of some abstract concept is valid to the extent that it
measures what it purports to measure.” (Carmines and Zeller, 1979,
p12)

If multiple experts answer a particular question by giving a similar judgement,
however that judgement is incorrect, then it doesn’t matter that it exhibits a high
level of reliability. The fact that the question was answered incorrectly means that
the judgements are not valid. This sometimes arises when a question is ambiguous
or confusing, and the expert is unaware of exactly what is asked. In the above
example of estimating a balls weight, perhaps the question didn’t clarify which
ball, or the ball was in packaging and it didn’t clarify whether to include the
weight of the packaging in the final estimation.

A common way to visualize the difference between reliability and variance is via a
target (Figure 2.8), where each measurement is placed on the target and the centre
is the hypothetical true measurement. From this it is clear that both reliability
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and validity are important, in order to make inferences about a true measurement
when provided with many different measurements from experts.

2.3.4. Biases During KA

There are several biases which present themselves when an expert is asked to
provide their judgment5. The result of systematic biases that present during KA
is a decrease in reliability and/or validity. Thus, it is important to make efforts to
mitigate any source of bias when conducting KA.

Early research by Tversky and Kahneman (1974) identified heuristics which are
used by people when making judgments. These heuristics tend to result in sys-
tematic biases during certain elicitation tasks. To illustrate, two of these are
highlighted below:

Anchoring Bias Anchoring refers to when somebody is unintentionally prompted
with a figure before they are asked for their judgement on the matter. For
example, Lichtenstein et al. (1978) asked two different groups to estimate the
number of annual deaths due to various causes. Both groups were primed
by being told a truthful value for a given cause of death. The first group
was told 50,000 people die each year due to motor vehicle accidents while
the second was told that 1,000 people die each year due to electrocution.
Both were factually accurate statements, but people primed with the higher
number gave higher estimates for other causes of death.

Availability Bias Availability bias can occur when the availability of information
about one particular answer outweighs that of other answers. For example,
it may be a topical matter and often appears in the media, or perhaps the
expert has more experience with one. Tversky and Kahneman (1973) pro-
posed several experiments to measure how availability can influence results.
One asked participants to estimate the frequency with which the letter k
(among others) appears in the first position of an English word, versus the
third position. Despite it being more than twice times as likely to be in the

5Biases are often referred to as “effects” in the literature. e.g. Instead of an anchoring bias, it
could be termed an anchoring effect.
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third position, respondents on average said that it is twice as likely to be at
the beginning of the word. It was hypothesised that this is due to the fact
it is easier for people to recall words beginning with k, rather than words
where k is the third letter.

Since that early research by Tversky and Kahneman (1974), many other biases
have been investigated. Arnott (2006, p60-61) presents a table of 37 different
cognitive biases and relevant references.

Mitigating Biases (aka Debiasing)

One of the simplest ways to confront biases is the so called “consider the oppos-
ite” approach. With this, experts are encouraged to question their responses, by
proposing situations in which they may be wrong. Fischoff (1981) showed that of
25 different debiasing techniques discussed, this was the most useful.

More recent research by Bazerman and Moore (2009) provide strategies for unfreez-
ing, changing, then refreezing peoples intuitions to tackle the problem of biases.
The idea is to convince people that despite past history showing that they may
be pretty good at decision making, they are in fact subject to many of the biases
discussed above (Larrick, 2004, p331). Once this has been shown to them (unfreez-
ing), then steps can be taken to address the biases (changing) before encouraging
them to maintain their new, good habits (refreezing).

2.3.5. Quantifying Expertise of Experts

In any discussion of expert elicitation, it is important to focus on what an expert
is, and what qualifies somebody as an expert. Unfortunately this is repeatedly
omitted in published articles. Expertise is often defined very loosely (Hoffman,
1998), and the difference between experts is rarely acknowledged.

“In some domains it is difficult for non-experts to identify experts, and
consequently researchers rely on peer-nominations by professionals in
the same domain. However, people recognized by their peers as experts
do not always display superior performance on domain-related tasks.
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Sometimes they are no better than novices even on tasks that are
central to the expertise.” (Ericsson, 2006, p4)

And as such, they encourage the authors of chapters in their handbook:

“...to describe explicitly their empirical criteria for their key terms, such
as “experts” and “expert performance”. For example, the authors have
been asked to report if the cited research findings involve experts iden-
tified by social criteria, criteria of lengthy domain-related experience,
or criteria based on reproducibly superior performance on a particu-
lar set of tasks representative of the individuals’ domain of expertise.”
(Ericsson, 2006, p4)

Discussions on experts qualifications are frequently found in literature on expert
systems development. This is unsurprising, given that expert systems are “com-
puter programs that exhibit some of the characteristics of expertise in human
problem solving, most notably high levels of performance.” (Buchanan et al.,
2006, p87).

The question of who decides those that are experts has been addressed by some
before. O’Leary et al. (2011) used a panel of meta-experts to help build a model
for quantifying expertise in the field of taxonomists. This model was then used to
weight opinions of experts during the knowledge elicitation phase. This is import-
ant because some experts will be experts in many areas of their field, while others
may be highly specialised (O’Leary et al., 2011). If they are highly specialised,
then they should only be considered an expert for a narrow subset of the questions
which are likely to be asked of them.

Despite the idea of expertise being heavily studied, such discussions are lacking
in the context of BN research. Martin et al. (2005) made use of experts to elicit
information for a BN model of the effects of grazing on bird populations. They
did make an effort to discuss the basis for choosing the experts in their study,
referring to them as “experts with extensive experience in the response of birds
to disturbance and field experience in grazed landscapes” (p268). However, they
then explicitly excluded the prospect of distinguishing between levels of expertise,
arguing that they are doing so to avoid “difficulties concerned with rating the
comparative “accuracy” of each expert’s opinion” (p269).

48



2.4 Combining Expertise

Another example of an attempt to quantify expertise is when eliciting BNs is Xiao-
xuan et al. (2007). In this paper, they weight opinions of experts according to the
criteria such as their professional title, self confidence of opinion, and proportion
of their time they spend involved with the domain. However there is little to no
discussion about how the weights were arrived at, or what happens if experts don’t
fit in one of the categories for a given criteria. Having said this, it is at least a
starting point, showing that they are thinking critically about how much to trust
each experts opinion.

2.4. Combining Expertise

For a long time, expert judgments have been combined together to form a single
knowledge base. This has been performed in a wide variety of fields, including
crowd sourcing (e.g Whitehill et al., 2009), expert elicitation (Onwuegbuzie et al.,
2009) and classification problems (e.g. Seni and Elder, 2010). This section will
highlight interesting work in each of these fields, in order to motivate the approach
this thesis takes to combining multiple expert opinions into a single BN.

2.4.1. Combining Experts Opinions During Elicitation

A common example of expert elicitation that requires multiple experts to have
their opinion combined is the focus group. This is where many experts discuss a
common theme, and the person or people administering the group are responsible
for mediating between experts to come up with a common solution. From a stat-
istical perspective, Sniezek and Henry (1989) found that judgements formed by
groups of experts were better than those obtained by averaging responses elicited
from experts individually. This is contradicted by further research by Armstrong
(2001) which found averaging is better than group consensus.

Some research making use of expert elicitation manually weights experts based on
subjective measures of expertise. For example, Dransfeld et al. (2000) weighted
experts by their time in an industry, position in a company, size and importance of
the company, and a self judged ranking of expertise. A similar approach was taken
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by Xiao-xuan et al. (2007). This thesis discourages assigning weights to experts in
such a manner, as it is quite subjective. It may be difficult to distinguish someone
who is highly self confident but inaccurate from someone who is shy and lacks
confidence, but is often more accurate.

It is only relatively recently that formal methodologies for combining expertise
from focus groups have come about. Onwuegbuzie et al. (2009) present a formal
methodology which explicitly takes into account factors such as which people were
talking during a certain discussion, who was dominating the discussion, whether
experts were in agreement, and how they showed their agreement (e.g. a nod of
the head vs vocally).

2.4.2. Statistical Techniques for Combining Results

For quite some time, machine learning researchers have been interested in com-
bining multiple models together to make more robust predictions. This process
is referred to as ensemble learning, and its goal is to combine the results of mul-
tiple “weak learners” into one strong learner which is much more accurate. Early
examples of this type of model include Boosting (Schapire, 1990) and Bagging
(Breiman, 1996). The continual addition of new ensemble algorithms lead to more
theoretical research on how best to combine results from multiple models. For
example, Kittler et al. (1998) formalized many common combination rules, which
are used to combine the results of multiple models.

In parallel to ensemble learning, another more recent field of research has also in-
vestigated statistical approaches to combining results from multiple sources. This
is the field of crowd sourcing (Quinn and Bederson, 2011), which has gained a lot
of attention due to the proliferation, cheap cost, and accessibility of online services
for performing simple questionnaires, such as Amazon Mechanical Turk (AMT)6.
In the field of crowd sourcing, participants are usually lay people rather than ex-
perts, and as such the research often has no knowledge about whether they are
“good” at the task at hand or not. As such, there have been statistical techniques

6https://www.mturk.com (Last retrieved 2016-04-01)
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proposed, which attempt to measure how expert a participant is, solely based on
the way they answer questions.

The problem with using crowd sourced data is that the people involved in pro-
ducing data are unknown to the researchers. They may be poor at the task at
hand, or they may even be actively adversarial, intentionally selecting the incor-
rect answer. As a result, the data collected can be very noisy. Recent work in
this field has resulted in several algorithms that are able to account for various
sources of bias, in order to better discover the underlying ground truth from noisy
data sets (e.g. Snow et al., 2008; Sheng et al., 2008; Whitehill et al., 2009; Raykar
et al., 2010; Wauthier and Jordan, 2011; Organisciak et al., 2012; Zhou et al., 2012;
Bachrach et al., 2012).

Majority Vote

A naive approach to deciding on the ground truth for a question is to take the
majority vote for each question. If there are 10 responses to a question with three
possible answers, the inferred correct answer would be the one with the most re-
sponses. This approach is often preferred for its simplicity (Lam and Suen, 1994),
and it rapidly improves accuracy with the addition of more participants (Lam and
Suen, 1994) although it saturates relatively quickly too (Bachrach et al., 2012).
The majority vote has proven to be useful in many domains, and often provides
equal or better results than more complex statistical or Bayesian approaches (Ba-
chrach et al., 2012).

Expectation Maximization Algorithm

Although majority vote is simple and effective, there is a plethora of recent research
investigating alternatives. Many of them are based on the early work to use the
expectation maximization (EM) algorithm to combine multiple responses into a
single model (Dawid and Skene, 1979). The intuition for this algorithm is that
it would be nice to use the accuracy of each expert to be able to weight their
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responses7. Dawid and Skene (1979) opted to use the EM algorithm for this
task, albeit in a clinical setting. They were interested in receiving multiple, noisy
responses from a single patient, to questions posed by multiple different clinicians
in order to obtain the ground truth response to each question. The intuition for EM
is to analyse the experts responses, assuming everybody is 100% accurate. Once
done, the majority vote can be used to estimate the ground truth for the question,
and then experts accuracy is adjusted depending on whether their responses align
with these ground truths. Once their accuracy has been calculated, the ground
truth is recalculated, with each persons response being weighted according to the
accuracy assigned in the previous step. These two steps are repeated until the
ground truth converges.

More Advanced Crowd Sourcing Algorithms

Although Dawid and Skene (1979) first proposed EM for combining multiple opin-
ions like this in the 1970s, it wasn’t until the past decade that there has been a
renewed push for research in this area. The motivation for Dawid & Skene was to
assess individual patients who were interviewed by multiple clinicians on different
occasions. These days, an increased thirst for data, and also online tools such as
AMT have enabled the use of crowd sourcing as a low cost method for gathering
and/or creating data. Examples of this are so called “citizen science” projects (e.g.
Chklovski and Gil, 2005; Raykar et al., 2010). Instead of individual patients inter-
viewed by multiple clinicians on different occasions, crowd sourcing has individual
ground truths, as decided upon by multiple lay people on different occasions.

Some of these allow for incorporation of question difficulty (Whitehill et al., 2009)
and active learning (Sheng et al., 2008; Wauthier and Jordan, 2011), resulting in
improved results. Others allow calculation of which participants contributed the
most to correct responses (Bachrach et al., 2012).

This thesis investigated applying the Majority Vote algorithm and the EM al-
gorithm in order to collate survey responses into an authoritative BN structure

7One could equally replace the word accuracy with “correctness” or “expertise” or other meas-
ures of an experts “goodness”, however accuracy is the term used in a lot of this type of
research.
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and parameters.

2.5. Surveys

Traditionally surveys have been used by demographers and sociologists, in order to
study large populations of people while only having to sample a representative few
(Babbie, 1990, p42). The goal is to study a broader population by taking a sample
of them and asking them questions. If done correctly, it is possible to make certain
assumptions about the entire population. In order to conduct a survey correctly
and successfully, there are many considerations which need to be managed. The
survey methodology has attracted a large amount of researchers since an early
paper by Neyman (1934) discussed various sources of errors which can arise in
survey data due to problems with sampling.

2.5.1. Total Survey Error

This section will discuss some facets of a good survey. The most common approach
to this has been termed the “total survey error” (Andersen et al., 1979; Groves and
Lyberg, 2010; Weisberg, 2009). This concept tries to enumerate possible sources
of error which appear in the process of conducting a survey, from designing and
preparing the survey, through to administering it and then analysing the data.
Each of these stages is capable of introducing their own bias or variance which
affect the conclusions of the survey in different ways, and minimizing each of these
sources of error results in better surveys.

Groves and Lyberg (2010) summarise total survey error by grouping error sources
into two main groups. The first are errors introduced by individual responses to
questions by individual survey participants. Examples of these include:

• Questions in a survey that do not adequately measure the construct they
were designed to measure.

• Errors or misunderstandings on behalf of the participant when answering
questions.
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• Processing errors caused by incorrect encoding or analysis of responses by
the survey administrator.

The second source of errors arise when aggregating multiple responses from differ-
ent participants and generalising the results to a broader population. Example of
these are:

• Sampling errors resulting from the survey respondents not being represent-
ative of the total population to be measured.

• Non-response error where participants from the sample who failed to respond
to the survey would have answered differently from those who did, biasing
the results.

The goal of any survey is to collect reliable and valid measurements. This approach
of enumerating each possible source of error and then trying to mitigate it is very
similar to the concept of debiasing in KA projects, discussed in Section 2.3.3 (p44).
Whether conducing a survey or a more traditional KA interview, reducing errors
and biases is important.

2.5.2. Surveys as a Knowledge Acquisition Tool

Historically, surveys have been used to collect data about a sample of individu-
als in order to extrapolate to an entire population and make inferences. This is
somewhat similar to trying to perform KA with a small number of experts, and
treat their knowledge as a proxy for the ground truth about a particular domain.
However, asking people questions in order to collect data for analysis is not limited
to sociology research. Rather, surveys can also be used as a way to extract tacit
knowledge from experts and make it explicit. In this way, they are a powerful KA
technique, if used well.

It is possible to construct surveys so that the respondent needn’t know the com-
plexities of the model that is being built based on their responses. This is useful
for BN elicitation because a survey should be able to be constructed such that the
experts needn’t be familiar with the inner workings of BNs or how to construct
them. As Babbie (1990, p.228) said, “questions should make sense to respondents
... the most important implications of the questions might not be evident to them”.
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Relatively recently, it has become more common for surveys to be used as a KA
tool to elicit knowledge, rather than to elicit opinions or demographic information
in social surveys. This type of application of surveys is in its infancy, as evid-
enced by Baker et al. (2014) who conducted expert elicitation using face to face
interviews and also web based surveys. Their results were inconclusive and sugges-
ted that further research is required to investigate whether surveys are a suitable
replacement or not.

This thesis took an approach similar to Baker et al. (2014) in order to investigate
the usage of surveys as a KA tool.

2.6. Chapter Summary

This literature review introduced BNs, why they are useful for solving problems,
and how they are typically constructed. The review of BN literature covered
various techniques for reducing the magnitude of the BN elicitation task. Some
approaches focus on the structure elicitation, and others on the CPT elicitation.
Both are important for reducing the total burden on experts when eliciting BNs.
The review then looked at the field of KA in order to identify some of the short
comings with traditional approaches to BN construction. The survey methodology
and its relationship to KA was also investigated to set the stage for the following
chapter to discuss the method by which this thesis applies the survey methodology
to BN elicitation in order to resolve some of the issues described in this review.
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This research is framed using the Design Science research (DSR) methodology.
This chapter begins by briefly introducing DSR in Section 3.1, followed by re-
iterating the problem this project aims to address. Following this is a detailed
depiction of the propositions this research seeks to address in Section 3.3. This
is then followed by introducing and discussing the two main research outputs to
come from this research in Section 3.4. Finally, the study which took place to
evaluate these propositions is discussed in Section 3.5.

3.1. The Design Science Research Methodology

When conducting research, particularly in Information Systems (IS), the outcome
is often a man made artifact (Simon, 1996). Such examples might be a decision
support system (e.g. Arnott, 2006), or processes for improving business manage-
ment (e.g. Van Aken, 2005). This type of research which results in artifacts has
been well studied by scholars interested in the science of design, and comes under
the umbrella of the Design Science Research (DSR) methodology (Hevner et al.,
2004; March and Smith, 1995). Design science is the “science of the artificial” (Si-
mon, 1969), where researchers produce new artifacts and study their use, impact
and implications. This is distinct from the so called natural science method which
can be thought of as researchers investigating and explaining naturally occurring
phenomenon (Walls et al., 2004, p45).

A recurring theme among many, but by no means all design science researchers is
the importance of producing research that can be applied:
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“The conventional wisdom in the design science literature is to promote
generality. This is assumed to foster research rigour and make theories
relevant to a (broad) class of problems and future practice. At the same
time, leaving considerations of design alternatives outside the scope of
design theories may deny practitioners important guidance. There is
a general trade-off between generality of a theory and its ability to
account for specific issues.” (Lukyanenko and Parsons, 2013, p168)

A similar sentiment is also echoed by the Information Systems Design Theory
(ISDT, Walls et al. 1992, 2004) which encourages researchers to “go beyond de-
scriptive and normative theories to provide specific guidance to the design process
through a prescriptive mode” (Walls et al., 1992, p49). As such, this research main-
tains that a prescriptive approach should be offered as research output, rather than
stopping at a general framework without much guidance in how to implement it as
a workable software solution. The following section discusses the problem which
was identified in Section 1.1, and for which this thesis presents a prescriptive
framework for addressing.

3.2. Problem Identification

In the terminology of Peffers et al. (2007), problem identification is usually the
first stage of any DSR project, or indeed any research project in general. For
this project, the identified problem arose out of an increasing need to construct
BN models by eliciting knowledge from experts. Existing interview based elicit-
ation methods are exhaustive, but also exhausting (Hoffman et al., 1995, p134)
both for the knowledge engineer and any experts participating. Thus, they are a
contributing factor to the knowledge bottleneck faced when constructing models
via expert elicitation (Hoffman et al., 1995, p134). The result of this is that less
experts will be able to commit the required time to elicitation projects. Even if a
large number of experts are able to commit the time required to elicit a BN, integ-
rating the opinions of each expert into the final model is challenging, as methods
for weighting and combining different judgments are required (Martin et al., 2012,
p35). These problems were discussed in greater detail in Chapter 1 culminating
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in the following research question:

How can the process of eliciting knowledge for construction of Bayesian
Networks be improved by making use of online surveys instead of face-
to-face interviews? (Section 1.2, p5)

This was elaborated on with reference to the following two sub questions:

1. As more experts are consulted, how can the total time and effort involved in
KA for BNs be reduced?

2. As more expert opinions are gathered, how can they be collated into a single
BN model without significantly increasing the workload to resolve differences?

Chapter 1 discussed the need for a new method of eliciting BNs which exhibited
the following improvements over the existing method of face to face interviews:

• Less time required of experts and researchers alike.

• Easier integration of differing opinions into the BN model.

• Less constraints on where and when experts can contribute.

As such, this research is rooted in an applied problem, that of how to perform
expert elicitation of BNs. The resulting solutions proposed by this research are
built on work done by researchers studying the survey methodology (e.g. Babbie,
1990), traditional ideas about how to elicit BNs from experts (e.g. Kjærulff and
Madsen, 2013), and also from the field of crowd sourcing (e.g. Quinn and Beder-
son, 2011). Gregor and Jones (2007) discussed the anatomy of a design theory,
specifying eight components which should be present in any information systems
design theory (ISDT). One of the important parts of an ISDT is testable propos-
itions (Gregor and Jones, 2007, p327). This is similar to the more traditional
natural science method, whereby a series of falsifiable hypotheses are announced
before conducting any experimentation. The following section discusses a set of
propositions that arose out of the research questions listed above, and which were
addressed throughout this research.
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3.3. Propositions

The testable propositions introduced in this section mostly relate to two main con-
structs: the number of experts, and the time required of each expert. By minimizing
the time required of experts, it is anticipated that the number of experts can be
maximized, and thus the final BN will include a more diverse range of knowledge.
The propositions are geared towards verifying whether SEBN is indeed able to
achieve this goal.

This section discusses a series of propositions designed to clarify the situations
in which the survey based BN elicitation technique is expected to be suitable
(Section 3.3.1), and those where it may not be suitable (Section 3.3.2). In addition
to these two sections discussing the process of eliciting a BN, Section 3.3.3 discusses
propositions about the resulting output of that process and the quality of the
resulting BN.

The propositions below are the precursor to Section 3.5 which discusses the details
of the evaluation that took place. The evaluation was conducted to support or
disprove the propositions shown below, and verify whether the two constructs of
interest .

3.3.1. Times When SEBN Would be More Suitable Than
Traditional KEBN

SEBN was designed to reduce the burden on experts in order to encourage more
to participate, compared to traditional KEBN. However, there will be some times
where traditional KEBNwill still be more suitable than SEBN. This section docu-
ments the claims whereby it is proposed SEBN will be more suitable. Section 3.3.2
documents propositions relating to times when it may be less suitable.

The propositions laid out here are based on accepted properties of surveys, notably,
how they compare to interviews as a data gathering technique. This comes from a
wealth of literature in a range of disciplines such as psychology and sociology (see
Section 2.5, p53). These fields have made use of questionnaires as a data gathering
technique for a long time.
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Proposition 1. SEBN will require less time of each expert than traditional KEBN.

The method proposed in this research outlines direct questions, compared to semi-
structured, qualitative interviews. It also discusses how the questions can be di-
vided up among a group of experts, so as to only ask a subset of all possible
questions to any given expert. As a result of this, the total time spent responding
to an online survey should be less than the time spent with an equivalent interview.

This is particularly important, because experts of the type desired for most know-
ledge elicitation tasks are often people high up in their field, who have many
commitments. As such, their time is valuable, and attempts to reduce the burden
on them should be investigated and considered.

Proposition 2. SEBN will require less time from researcher than traditional
KEBN.

All elicitation techniques require some level of effort be expelled by the person
conducting the elicitation. Both traditional KEBN and SEBN require initial plan-
ning on behalf of the researcher. This is spent deciding how the interview or
survey should be laid out, what the goals are, and what questions will be asked
to achieve those goals. When researchers choose to use surveys as a replacement
for an interview, they can take a lot more effort to prepare. While it is true that
interviews can take an equally long amount of time to prepare, semi-structured
interviews provide more scope for exploration during the interview. In the survey
case, the researcher must take extra care to ensure all desired avenues of discus-
sion are included in the survey, as they are not able to ask any further clarifying
questions once the surveys have been sent off. While this is still relevant for the
survey method proposed in this research, the prescriptive nature of the technique
reduces this burden by providing guidance about, and constraining the questions
that should be asked.

When administering the questions, online surveys require much less of the research-
ers time than an interview would. Once the online survey is prepared, knowledge
engineers need not spend time administering questions at all, until it comes time
to analyse the results. This is in contrast to interviews, which can range from
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Preparation Recruiting Administration Transcription Analysis
Surveys        ##  ##  ##

Interviews   #   #          
Table 3.1.: Rough estimates of the relative time commitment required of the
researcher for surveys and interviews. Estimates are indicative only, to show
the occasions where surveys would be expected to take less of a researchers
time.

single interviews over an hour or more, or indeed projects that span multiple in-
terviews over several days/weeks/months (Milton, 2008, p50). There are private
companies who are able to conduct interviews on behalf of a researcher, reducing
the interviewing time of the researcher to virtually nothing (e.g. Survey Monkey1,
Lime Survey2). However, such companies tend not to specialise in knowledge eli-
citation of the type required for BN elicitation, but rather more general tasks such
as collecting demographic data or conducting market research.

Not only does the researcher spend less time interviewing experts, they will also
spend less time transcribing results. In an interview, the researcher usually records
the interview, transcribes it, then analyses the transcription to extract relevant in-
formation (Milton, 2008, Chapter 4)3. With SEBN, the data is entered in a format
that is already prepared for analysis. The transformation of information from ex-
pert knowledge into a functioning BN is conducted completely by software in the
survey approach, whereas things such as resolving differences between experts must
be done manually by the expert in the traditional KEBN approach.

A high level summary of the estimated amount of time required by experts in
survey vs interview based methods is shown in Table 3.1.

Proposition 3. SEBN will be more suitable than traditional KEBN with geograph-
ically dispersed experts.

Although not always the case, sometimes the only experts which are available to
1https://surveymonkey.com
2https://limesurvey.com
3Note that this may sometimes be different in KEBN (compared to regular interviews), where
BNs can be built during the interview by the researcher in conjunction with the experts,
using commercial software such as Netica, BayesServer, etc.
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contribute to a project are limited by the availability of those that the researchers
are physically able to meet. Surveys solve this issue by being administered without
the researcher being present. Therefore, researchers are able to mail out, or more
recently, conduct online surveys to elicit information from experts. Having said
this, it is also true that interviews can be conducted online or over the phone,
although this does not seem to be a prevalent technique used in many knowledge
engineering projects at this point in time.

Proposition 4. SEBN will be better able to distinguish knowledgeable experts from
others compared to traditional KEBN.

The literature review in Section 2.3.5 (p47) discussed how there is a gap in the
way in which many knowledge elicitation projects quantify expertise. The level of
expertise is often gauged by the number of years they have worked or the position
they hold (e.g. Xiao-xuan et al. (2007)). However, there are always going to be
people who have worked for less time, or in a lesser position, but who would be
considered “more expert” than somebody in a more senior position. Also, there
are times when experts are chosen as a matter of convenience, and in fact are not
as expert as one may hope.

The survey method explicitly defines a procedure for incorporating knowledge
from experts of varying degrees of expertise. The techniques are adopted from
the field of crowd sourcing (Quinn and Bederson, 2011), which has a history of
successfully taking information from multiple respondents of unknown expertise,
and weighting each respondent based on how often they tend to provide useful
information in their answers4. When the problem is constrained even more to
people who can reasonably be presumed to have expertise in a problem area, the
same algorithms differentiate those with higher or lower levels of expertise.

4“Providing useful information in their answers” could equally be termed “answering correctly”,
but that becomes much more difficult to define when there is no gold standard answers to
compare participants responses with.
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3.3.2. Times When Traditional KEBN Would be More Suitable
Than SEBN

Just as there are valid reasons to choose surveys in preference to interviews, there
are also reasons to opt for interview techniques. This section introduces propos-
itions relating to features of traditional KEBN, that are preferable compared to
SEBN.

Proposition 5. Traditional KEBN will be more flexible than SEBN.

In the context of this research, “more flexible” refers to the ability to adapt the
elicitation process in response to answers given during elicitation. Compared to
questionnaires, interviews are able to further investigate responses given by ex-
perts5. This can result in new and unexpected knowledge that was not thought of
before the interview took place. This is not the case with surveys, whereby the set
of questions is fixed before the first survey is administered, and should not change
during the entire elicitation process.

Proposition 6. Traditional KEBN method will be more suitable than SEBN when
only a small number of experts are available.

The questionnaire method described in this thesis (Chapter 4 and Chapter 6) al-
locates a subset of question to each expert. Thus, if there are less experts available
then more questions need to be allocated to each of them. This results in more
time required of each expert (Figure 3.1) and the benefit of using SEBN over
traditional KEBN diminishes. The time an expert spends answering the extra
questions allocated to them will probably be better spent in an interview with the
researcher. This allows all of the flexibility described in Proposition 5. The actual
number of experts required to make SEBN a better use of experts time depends on
the problem domain, specifically the number of variables and variable categories
to be included in the BN.

5Note that, consistent with the rest of this thesis, the term “interview” is being used to refer
to semi-structured interviews or focus groups. If the term was used to describe a survey
administered face to face or over the phone, then they would probably exhibit the same lack
of flexibility shown by online surveys.
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Number of experts participating

Traditional KEBN
If experts are interviewed individually

Traditional KEBN
If in group setting where more people
often means more disagreement

SEBN
Highter total number of experts means
less questions required of each expert

Figure 3.1.: As more experts participate in a survey, each is allocated less ques-
tions. Whereas with traditional KEBN, more experts in a group will likely
increase the chance of disagreement which require resolution.

This is a particularly important facet of this thesis. The nature of many KA pro-
jects is that there is not a large pool of experts to draw on. Therefore, one must
be cautious before deciding if a method such as SEBN is suitable, after investig-
ating the number of experts who can make themselves available to participate in
a particular project.

Examples of projects which likely have fewer experts to consult with include com-
mercial projects that aim to build predictive models for the purpose of gaining a
competitive advantage. When a commercial organisation invests in such a model,
it is unlikely that many competing organisations would be willing to pool their
respective experts together in order to build such models. However, in other fields
such as government, not-for-profit organisations, or research institutions, there
should be more incentive for a larger, more diverse group of experts to collaborate
in constructing models using SEBN. It is anticipated that such fields would be able
to benefit more from an approach such as SEBN which depends on the availability
of a larger number of experts.

3.3.3. Quality of BNs Elicited Using SEBN vs Traditional
KEBN

Whereas the two previous sections presented propositions discussing the merits of
the process of eliciting BNs using SEBN or traditional KEBN, this section discusses
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the actual output of the processes - the BNs themselves. For the purpose of this
research, “quality” was defined as the ability of a BN to model a specific probability
distribution accurately. As a BN is a model, and all models are simplifications on
some level, a worse BN model is less able to represent a desirable probability
distribution. In the pathological case, almost zero time is required to randomly
generate a BN, however that would not be very interesting or useful.

The following propositions all reference the idea of two networks using the same
variables, one elicited using SEBN, and the other elicited using traditional KEBN.
This concept is discussed in much greater detail in Section 3.5.

Proposition 7. BNs elicited using SEBN and traditional KEBN will not be identical.

Given that the same experts are not likely to produce the same BN twice using
traditional KEBN, it is even less likely that two disparate techniques would produce
an identical network. This is due to natural uncertainty inherent in the domain
as well as experts ability to convey their knowledge consistently.

Proposition 8. BNs elicited with SEBN and traditional KEBN will be similar in
structure.

Although Proposition 7 discussed why it is unlikely for two elicitation techniques
to produce identical networks, there should still be similarities. If both networks
are elicited from experts, and the arcs are meant to represent causal relationships,
then the omission or addition of a causal relationship in one model provides feed-
back about how similar (or dissimilar) the models are. It would be ideal if the
structure of a BN elicited using SEBN was similar to an equivalent BN elicited
using traditional KEBN. Alternatively, if the structure was completely different
and no arcs were the same, then that would provide evidence that SEBN tends to
force people to think in different, sub-optimal, or incorrect, ways.

Proposition 9. BNs elicited with SEBN and traditional KEBN will encode a
similar probability distribution.

Regardless of the method of elicitation, the goal is the same. That is, encode
the probability distribution of some process or data into a BN that best matches
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that distribution. Thus, this proposition states that even if SEBN produces net-
works with different structures, they should be able to model the same probability
distribution.

To address these propositions, this thesis produced and evaluated two artifacts
which are discussed in the following section. The propositions are revisited in
Section 8.2 (p195) to show how successfully this thesis addressed them.

3.4. Artifacts Produced From This Research

One of the core differences between design science and natural science is the focus
on “produc[ing] a viable artifact in the form of a construct, a model, a method,
or an instantiation.” (Hevner et al., 2004, p82). This section discusses the two
artifacts that arose from this research (Figure 3.2).

3.4.1. Method to Elicit BNs Using Online Surveys

The main artifact produced by this research is a new method of BN elicitation
using online surveys (SEBN). March and Smith (1995) describe methods as:

“...a set of steps (an algorithm or guideline) used to perform a task.”
(p257)

The method artifact produced by this thesis is the set of steps required to elicit
BNs using online surveys. The goal was to propose a method that addresses the
problem identified in Section 3.2 and adheres to the propositions in Section 3.3.
The design and development of this process is described thoroughly and prescript-
ively in Chapter 4 and Chapter 6.

...of constructing BNs
via online surveys

A WEB APPLICATIONA NEW METHOD

...implementing the
method in software

Evaluate method by
conducting online survey

using web application

Figure 3.2.: The two main artifacts produced as a result of this research.
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3.4.2. Open Source Web Survey Application

In order to be able to verify claims about the ability of the new elicitation method
to produce BNs, it was implemented as an open source web application which can
be deployed to administer online surveys for eliciting BNs (Serwylo, 2013). The
DSR literature refers to such implementations as instantiations, which March and
Smith (1995, p258) define as:

“. . . the realization of an artifact in its environment.” (p258)

Instantiations are helpful for evaluating whether proposed methods are indeed
effective at solving the problem they were designed to solve. Also, by making
software artifacts available for others to use and build upon, they can be used by
practitioners in relevant fields.

The technical details of the web application are highlighted in Appendix A (p237).
These details include the technology stack used to build and deploy the software,
decisions that went into its design, screenshots, and documentation on how to
configure it in order to conduct surveys.

This research continually evaluated the web application as it was being built. How-
ever, given the scope of this project, these evaluations were not as comprehensive
as those which designed to evaluate the method to elicit BNs using online surveys.
Section 8.7.2 (p215) discusses future research which should focus on formally eval-
uating the web application.

3.4.3. Note on the Terminology of “Instantiation”

Most DSR researchers use the term “instantiation” for concrete realisations of
frameworks or workflows in software. The remainder of this thesis opts for the term
“implementation”, as it is a term more commonly employed by software developers
to refer to the realisation of an abstract concept in a tangible piece of software
(e.g. “Can you please implement this specification”). To ensure previous DSR
publications are not misquoted, “instantiation” may still be used when referring
directly to past DSR publications which use that term.
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3.5. Evaluation

Despite early DSR researchers proclaiming the importance of evaluation (e.g.
Hevner et al., 2004; March and Smith, 1995; Nunamaker Jr and Chen, 1990) it
is only comparatively recently that researchers have presented specific theories of
how to evaluate DSR research. Venable et al. (2012) and their predecessor Pries-
Heje et al. (2008) proposed a taxonomy with which to organise various evaluation
tasks. It is based on two dimensions: naturalistic ↔ artificial, and ex-ante ↔
ex-post. Naturalistic evaluations are those which take place in the setting the res-
ulting artifact is designed to be used in, whereas artificial evaluations take place
in more contrived situations such as laboratory experiments. Ex-ante evaluations
take place during the research process and obtain results that inform further de-
velopment of the artifact. Ex-post evaluations are conducted after the artifact is
complete, and evaluate whether the artifact performs as expected, or they identify
future areas of improvement.

The following section discusses two ex-post, naturalistic studies which were con-
ducted in order to address the propositions from Section 3.3 and to provide further
insight into how traditional KEBN and SEBN compare. This is followed by a dis-
cussion of the artificial, ex-ante evaluations that took place during the research.

3.5.1. Empirical Evaluation of SEBN

To satisfy the goals above, this thesis conducted an empirical evaluation of SEBN
to investigate the propositions outlined in Section 3.3. This section provides a
brief overview of the evaluation, to be elaborated on in Chapter 5 and Chapter 7.

To empirically evaluate SEBN, 107 participants took part in two online surveys,
of which 67 participants completed. The first survey was to elicit the structure
of a BN, and the second was to elicit the parameters of a known BN structure.
The resulting BN structure and parameters were compared to a known, published,
gold standard network to measure whether the elicited network is “good” or not6.

6The evaluation in Chapter 5 (p103) discusses in great detail what it means to be a “good”
network.

69



Chapter 3 Methodology
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Figure 3.3.: A broad overview of the evaluation process, whereby a survey is
conducted, and the resulting BN(s) are then compared to an existing, gold
standard to see how closely they match.

In addition, this evaluation serves to collect data about how long experts spent
answering questions, how flexible SEBN was, and other data to help address the
propositions. Figure 3.3 shows an overview of the evaluation process.

Given the scope of this research project, some trade-offs were made when design-
ing the evaluation. The remainder of this section discusses what an idealistic
experimental evaluation would entail so that it can highlight specifically where the
evaluation conducted by this project deviated, and the reasons why. This research
suggests that there are three criteria that should be met before comparing the
structure and parameters of two BNs, such that the comparison is as meaningful
as possible:

1. Both should consist of the same variables

2. Both should be constructed using the same technique (e.g. same learning
algorithm or similar traditional KEBN procedure)
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3. Both should make use of the same experts and/or data

Criterion 1 can be met by utilising an existing network that is already published.
This was used to construct relevant survey questions, as prescribed by the survey
method. Although some of the variables may not end up in the final network (if
experts answering the survey don’t think they are relevant), it gives the best basis
for comparing two networks that are supposed to represent the same probability
distribution. This is the approach taken by the evaluation in this research.

Given that this project proposes a new methodology for eliciting BNs, it is imme-
diately obvious that criterion 2 is unsatisfiable. The closest to this is to compare
with an existing network created using a technique that is similar to the one being
proposed. Even in the absence of this, the comparison between BNs is meaningful,
as it shows whether the networks both approximate the same probability distribu-
tion. The gold standard network used in the evaluation had its structure elicited
in a way similar to traditional KEBN, which is preferable to a BN whereby the
structure was obtained from data driven approaches.

Finally, for criterion 3, ideally the same experts would be used in the construction
of the original network. However this is not always possible, due to them not being
available, not being interested, not being identifiable, or simply not existing (e.g.
if the network was learnt from data). Indeed, the evaluation uses a network which
was produced in 1997, in another country. For these reasons this evaluation does
not compare networks produced by the same set of experts.

Despite these issues that arise when trying to compare BNs from different sources,
it is something that has been performed in the past to evaluate new BN construc-
tion techniques (e.g. Kennett et al., 2001; Tsamardinos et al., 2006).

3.5.2. Iterative Evaluation During Research

The previous section discussed the two specific studies conducted to evaluate the
artifacts arising from this research. Given that DSR is an inherently iterative pro-
cess (Hevner et al., 2004, p88), continual ex-ante artificial evaluations took place
as the artifacts were conceived, designed, and implemented. These evaluations
aided in the formative design process described by Gregor and Hevner (2013) as:
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“. . . an iterative design with intermediate test stages, where the testing
and evaluation is formative, part of the development process, and is
likely to include basic tests of validity using test data, scenarios, and
simple experimentation” (Gregor and Hevner, 2013, p350)

In addition, it was anticipated that areas of improvement would be identified
during the final two evaluations described in Section 3.5.1. Sources of improvement
came from the researcher overseeing the survey, the feedback of participants, and
logs gathered from the software which facilitated the survey. Given that the two
survey evaluations formed the final iteration of this research, some of the identified
improvements are discussed in more detail in the concluding chapter (p214).

3.6. Chapter Summary

This chapter provided a detailed discussion about the methodology used while
conducting this research. The method stems from the DSR discipline, and is
informed by many key articles in this field. The thesis produced two main outputs:

1. A method for eliciting BNs using surveys (SEBN).

2. An implementation of SEBN as an open source web application.

The method is be of use to technically minded people who wish to implement
it for themselves, and is discussed in great detail in Chapter 4 and Chapter 6.
The implementation is of more use to people wishing to elicit a BN but do not
have a reason to create their own implementation from scratch. The evaluation
is presented in Chapter 5 and Chapter 6 covering where SEBN excels, and where
it is not as useful. It does this by addressing each of the propositions presented
in Section 3.3 using the evaluation method described in Section 3.5. Those same
propositions are then revisited in the concluding chapter in Section 8.2 (p195).
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4. Building BN Structure Through
Survey Based Elicitation

This chapter will discuss the first part of the main contribution of this thesis:
a knowledge elicitation process for eliciting BN structures using online surveys
(SEBN). The second aspect of SEBN which presents a method for eliciting BN
probabilities is discussed in Chapter 6. Section 4.1 will start with a simplified
overview of the process, which subsequent sections will build on.

4.1. Overview

Figure 4.1 presents a flow chart illustrating a simplified overview of SEBN. This
section will briefly describe the main parts of the flowchart, and the intuition
behind them. As with most surveys, this chapter is interested in deciding what
the subject of the questions should be (obtain variables), producing the most
appropriate questions (generate questions), combining multiple different expert
responses to each question (collate answers), and then using these results to solve
a problem (produce BN structure). The remaining parts of the process will be
discussed in later sections of this chapter.

Obtain Variables Chapter 2 mentioned that the first step in constructing a BN
is to elicit the variables of interest and their respective states. This is required
because the structure is entirely defined by these variables and the relationships
between them. Although proposing an approach for identifying variables is beyond
the scope of this thesis, the future work chapter covers how the techniques proposed
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Start
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Variables
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BN Structure

Collate
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Identify
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Anomalies

Finish

Classify
Variables

Allocate
Questions

Figure 4.1.: Basic overview of the survey process. Each stage will be elaborated
on in greater detail as this chapter progresses.

in Chapter 4 and Chapter 6 could be adapted to also facilitate the identification
of variables (Section 8.7.4, p216).

Generate Questions The most basic of questions that is asked in order to pro-
duce a BN structure is: “Does variable X influence variable Y ?”. Although BNs
need not only encode causal relationships, it has often been discussed that asking
causal questions of experts enables them to use their basic intuition of causality
to produce the BNs structure (Korb and Nicholson, 2011). The alternative is to
train experts in conditional independence, and other nuances required for that.

The process of turning a list of variables into meaningful questions is discussed in
detail in Section 4.2. This will be supplemented by Section 4.3 and Section 4.4,
which focus on reducing the number of questions which need to be answered for
the survey to produce meaningful results, but approach the problem from two
different angles.

Collate Answers Once multiple experts have completed the survey, answering
questions about causal relationships between variables, it is time to make sense
of the data. The data which will be available is a set of explicit relationships
that various people think exist. The main requirement is to consider how many
people need to agree on a relationship before it is included in the final structure.
Additional issues worthy of consideration include dealing with conflicting opinions,
if somebody is more knowledgeable than others, and the accidental introduction
of undesirable network structures when combining several disparate responses into
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a single BN. Section 4.5 introduces algorithms from the field of crowd sourcing,
and discusses how one in particular can be used to help answer many of the issues
raised above.

Produce BN Structure Once the answers are collated, it is a matter of output-
ting them to a format that can be understood by BN software. This could be done
manually, or, if the survey was conducted online, automatically using the software
used to conduct the survey. After collating the questions, but before producing a
final BN, the resulting network structure should be analysed for anomalies. Nu-
merous different types of anomalies, some of which are fatal to the success of a
BN, others which are “nice to have” properties of a BN, are discussed at length in
Section 4.6. Subsequently, Section 4.7 discusses the mechanics behind exporting
BN structure to a format understood by major BN software vendors.

4.2. Generating Questions

Start
Obtain

Variables
Generate
Questions

Produce
BN Structure

Collate
Answers

Identify
Anomalies

Resolve
Anomalies

Finish

Classify
Variables

Allocate
Questions

Figure 4.2.: Procedural generation of questions for the survey. Note that although
“classify variables” is conducted prior to “generate questions” in the flowchart, it
makes more sense for the purpose of explaining the survey technique to discuss
question generation first.

The very first stage of structure elicitation in the survey process is to be able to
generate a list of relevant questions. This section will begin with a naive algorithm
for creating questions, and then augment and improve it as further details are dis-
cussed. The initial algorithm to generate questions is described in Section 4.2.1.
This is followed by a discussion of how the variables should be labelled for max-
imum readability in Section 4.2.2. Following this, Section 4.2.3 mentions the need
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(a) A simple Cancer BN with five nodes and
five arcs (from Cooper, 1999).

(b) Matrix encoding directed relationships
in the Cancer BN from Figure 4.3a.

Figure 4.3.: Two different ways to visualise the relationships between variables -
as a network and as a matrix.

for manual review of the questions, in order to verify that they are sensible. Fi-
nally, Section 4.2.4 talks about some issues which may arise after the questions
are generated, and suggested techniques for combating these.

4.2.1. Initial Basis of All Questions

According to Proposition 2 (p61), the amount of work required of the knowledge
engineer should be minimized. This particularly comes into play when the ques-
tions for the survey are generated. Thus where possible the questions should be
generated procedurally. This is done by using an n×n adjacency matrix, where n
is the number of variables in the network (Section 2.2.4, p33). Each entry in the
matrix corresponds to an arc in the graph. This is shown visually in Figure 4.3,
whereby the directed arcs in Figure 4.3a are encoded as entries in the adjacency
matrix in Figure 4.3b.

To construct a BN based on a set of variables, it suffices to iterate over each cell in
the adjacency matrix and ask if there should be an arc between the two variables
in the resulting BN. However, this depends on the expert having an understand-
ing about BNs and what it means to include an arc in that network between
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two variables. That is, each arc represents conditional dependence between two
variables.

In order to circumvent the requirement for experts to understand BNs, this work-
flow makes the simplifying assumption that each arc in a BN represents a causal
relationship. This assumption has been found to hold true in many applications
(Heckerman, 1997; Spirtes et al., 2000). It may now be apparent that given a set
of variables, the structure of a causal BN can be derived by iterating over every
cell in the matrix, and asking:

“Does X influence Y ?”

Once each of these has been answered, the structure of the network is known.
The remainder of this section will discuss how to refine this process, so that the
questions are actually readable and provide enough context for an expert to answer
in a survey context, where they may not be able to ask the knowledge engineer
to clarify. Subsequent sections will deal with how to reduce the magnitude of the
problem, so that less than n2 questions are required.

4.2.2. Making Survey Questions Easy to Understand

For historical or technical reasons, a lot of commercial BN construction software
(and indeed more general statistical software packages) require variable names to
be alpha-numeric. As such, variables such as “Car Cost” have their whitespace
removed and end up as the slightly less meaningful “CarCost”. The side effect is
that many of these software packages have variable names (machine readable) and
also variable labels (human readable).

The readable labels required for this algorithm are even more human readable
though. Rather than just adding whitespace or special characters where required,
they need to be able to help provide context when used as a sentence fragment such
as the X in “Does X influence Y ?”. For example, instead of changing “CarCost”
to “Car Cost”, it may be preferable to opt for something like “the cost of a persons
car”. Note how this fits much better when substituted into a more generic sentence:

• “Does CarCost influence ...?”
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• “Does Car Cost influence ...?”

• “Does the cost of a persons car influence ...?”

Also note that this is not quite the same as a full blown description, which is also
ideal. That is, if a user cannot make sense of a particular question, they should
be offered some contextual help about the in-depth meaning of variables, beyond
what the readable label has to say. In the BNE software, descriptions are shown
as contextual help which is accessed by clicking question mark icons next to the
relevant variables.

Algorithm 4.1 Basic algorithm to generate questions of the form “Does X influ-
ence Y ?”
1: V← Set of all variables
2: Q← ∅ . Generated Questions
3:
4: for all V as x do
5: x←ReadableLabel(x)
6: for all V \ {x} as y do
7: y←ReadableLabel(y)
8: q ← "Does x influence y?"
9: Q← Q ∪ {q}
10: end for
11: end for

4.2.3. Manual Intervention and Rewording of Questions

As discussed in the previous section, it is worthwhile to automate the process
of question generation as much as possible. However, there will likely be some
cases where procedurally generated question are generated that turn out to be
nonsensical and rather confusing. Therefore, Algorithm 4.2 also proposes that
each question be read by the knowledge engineer to double check for clarity. It
may be that in the future, after further refinement and evaluation of the survey
method, this is a non-issue and can be skipped. But at this early stage in the
development of SEBN, it is prudent to verify this.

During testing, one thing which came up was the difference between variable tenses.
That is, one variable may be about the present tense, and another is about the
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future tense. Consider the following example of two variables, Age (age of client)
and Theft (car gets stolen), which when combined procedurally result in a question
that doesn’t quite make sense:

“Does age of client influence car gets stolen?”

In this example, there are two variables, age of client (nominal variable, about the
current state of a client) and car gets stolen (boolean variable, about a possible
future event). Due to the differing tenses, the question is quite jarring. In such a
case, manual intervention will be required by the survey administrator, to change
it to something more suitable, such as:

“Does the clients age influence the chance of their car being stolen?”

Notice how the use of the word “their” in this example depends on the variable
being substituted at the start. In this case, it refers to information about “the
client”, but it may equally refer to information about their car. This would com-
pletely change the context of “the chance of their car being stolen” and make
the question grammatically incorrect. Empirically, this seems to be more of an
issue when background variables are related to problem variables (see Section 4.3,
Figure 4.5).

4.2.4. Dealing with Questions that Don’t Make Sense

Even after correctly semantically labelling variables (Section 4.2.2) and manually
rewording nonsensical questions (Section 4.2.3), it is possible to produce some
questions that simply don’t make sense to some people. One expert may believe
that a question is clear and unambiguous, whereas somebody else may think it
doesn’t make any sense at all.

A rule of thumb could be that if a relationship is confusing enough that people are
unable to make sense of it, then it may not be a causal relationship worthy of inclu-
sion in a model. In such cases it may be worth encouraging participants during the
survey to answer “No” to questions “Does X influence Y?” if it doesn’t make sense
to them. Sometimes knowledge engineers make decisions to exclude information
from models, if that information will cause confusion in the future. Modelling is a
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balancing act between being producing models that are understandable, maintain-
able, and simple, versus those that are the most faithful representation of reality
that they can be.

Algorithm 4.2 Adaptation of Algorithm 4.1 which takes into account manual
rewording of questions of the form “Does X influence Y ?”
1: V← Set of all variables
2: Q← ∅ . Generated Questions
3:
4: for all V as x do
5: x←ReadableLabel(x)
6: for all V \ {x} as y do
7: y←ReadableLabel(y)
8: q ← "Does x influence y?"
9: if NotSensible(q) then
10: q ←ManuallyRewordQuestion(x, y)
11: end if
12: Q← Q ∪ {q}
13: end for
14: end for

4.3. Constraining Possible Questions

One of the most immediate problems that arises from Algorithm 4.2 is the large
number of questions that are required to be answered. Given Proposition 1 (p61)
which states “Questionnaire method will require less time of each expert”, this
is not ideal. The process of generating questions did not describe any means
of reducing the number of questions below n2 − n (where n is the number of
variables). The total number of questions required quickly becomes unmanageable,
thus negating some of the benefits of using SEBN over traditional KEBN, namely
the reduced time required of each of the experts.

Previous research to elicit BNs via surveys (e.g. Xiao-xuan et al., 2007) or which
used an n × n matrix to elicit information about a BN (Flores et al., 2011) did
not sufficiently address the n2 problem. Both asked experts to answer questions
of the form “Does X influence Y ?” for every combination of variables, with little
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Figure 4.4.: Before generating questions, variables are classified into categories.
This enables the total number of questions to be reduced.

to no discussion on how to reduce the number of questions before presenting them
to the experts. This may be because these two papers were one off studies where
the goal was to build a BN to solve a problem, rather than propose a more general
approach to survey elicitation which is the goal of this thesis. To address this,
Figure 4.4 amends the flowchart in order to facilitate constraints on the overall
number of questions that need to be generated.

SEBN uses an approach based on that of Kjærulff and Madsen (2013, p152-154)
which describes general classes of variables which tend to have certain causal de-
pendencies among themselves. Figure 4.5 shows the four variable classes described,
and how they are able to influence each other. For example, problem variables can
influence symptom variables, but symptom variables never influence problem vari-
ables. An example of how this might be applied to the cancer network is shown
in Figure 4.6.

Figure 4.5.: Four general classes of variable and the logical dependencies between,
them proposed by Kjærulff and Madsen (2013, p152-154).
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Although there are some cases when the rules might be too rigid, applying this
general principle greatly reduces the total number of possible questions which can
be asked. This trade-off is acceptable, given that a model is by definition a simpli-
fication or abstraction of a real phenomenon. Note that applying constraints based
on variable classes only works given that this thesis assumes the BNs being elicited
represent causal relationships between variables. If non-causal relationships were
allowed then such a constraint on questions could not be applied.

History of
Smoking

Chronic
Bronchitis

Lung
Cancer

Fatigue
Mass Seen
on X-Ray

Background
Variables

Problem
Variables

Symptom
Variables

(a) The classes of each variable in the cancer net-
work.

(b) Greyed out squares are those which are in-
eligible due to inter-class constraints.

Figure 4.6.: Illustration of the variable classification scheme proposed by Kjærulff
and Madsen (2013). Note how the number of possible relationships in the matrix
is greatly reduced, thus reducing the number of questions required by a survey.

There are many ways in which this could be augmented to make it more flexible.
The following sections describes two ways in which this could be adopted to con-
strain questions in different ways. This is followed by some considerations that
should be taken into account.

Allowing Intra-class Relationships Figure 4.7 loosens the constraints of Fig-
ure 4.5, allowing variables to be able to causally influence other variables of the
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same class.1

For example, the car insurance network from Binder et al. (1997) might classify
Age and Has Advanced Driver Training as background variables, and Accident as
a problem variable. This is a good start, because the fact a person had an Accident
cannot influence their Age, but their Age can influence their chance of having an
Accident. If the model was constrained to the relationships depicted in Figure 4.5
though, then Age would not be able to influence Has Advanced Driver Training.

By default, the BNE software allows intra-class relationships. However, this can
be changed by configuring the software appropriately.

(a) Elaboration of Figure 4.5 whereby
variables within a particular class
are able to influence each other.
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(b) Number of questions required increases marginally
as intra-class relationships are allowed. Note that
even though the diagonal cells represent intra-class
relationships, it is impossible for one variable to de-
pend on itself for the purpose of a BN (or any DAG,
for that matter).

Figure 4.7.: Relaxing constraints on the variable classes, by allowing intra-class
relationships.

Adapting Categories for New Domains Described above is a general approach
to classifying variables, which will help reduce the number of questions for most

1Note how Figure 4.7b seems to show that background variables cannot influence other back-
ground variables, as they are greyed out. However, this is only because the cancer network
(Figure 4.6) only has one background variable. Given this variable can’t influence itself, it
is greyed out. If there were more background variables, then they would indeed be able to
influence each other and this would be reflected in the adjacency matrix.
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BNs. Alternatively, it may be more suitable to devise different categories for a
specific domain which still impose a logical dependency. For example, the water
management BN by Chan et al. (2010) (produced using traditional KEBN) has
six distinct groups of variables:

1. Water Quality

2. Human Activities

3. Affordability

4. Management

5. Climate

6. Sustainability

These tend to have a logical dependency which helps segment the variables. For
example, neither Water Quality, Human Activities, Affordability, Management, or
Sustainability is able to influence the Climate for the purposes of this model. If
SEBN was used, the number of questions which required answers would be reduced
significantly using these dependencies.

Appendix E explores domain specific classes in more detail in the context of the
Chan et al. (2010) BN. It shows that, similar to the generic classes outlined earlier,
the number of survey questions which require answers is reduced by 50% from the
naive case where any variable can influence any other. Although the reduction in
questions using the classes outlined Appendix E is about the same as the generic
classes above, it has the added benefit of being able to allocate questions from
classes with well defined, domain specific semantics, to experts with particular
knowledge in that area (see Section 4.4.2).

Who Assigns the Variables to Categories? In principle, classifying variables
into background, problem, mediating and symptom classes requires somebody with
a level of expertise. This is not dissimilar to some algorithms for learning BNs from
data, where there is often a requirement that variables be ordered (e.g. the K2
algorithm, Cooper and Herskovits, 1991). In the case of these algorithms, the
order implies that any variable in the list can only be influenced by variables that
precede it to ensure there will not be any cycles in the learned graph.
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The process of requiring a knowledgeable expert as input to an algorithm for
learning BN structure from data has been criticised in the past as being coun-
terproductive to the goal of learning BNs solely from data (Korb and Nicholson,
2011, p259). However, these criticisms are levelled at the dependence of expert
knowledge for algorithms that are supposed to operate purely on data. In SEBN,
the goal is to have all information about the structure of the BN elicited by ex-
perts anyway, so this is less of an issue. It is still a minor issue though, because the
knowledge engineer will have to converse with an expert, rather than do everything
strictly via surveys. The future work chapter discusses the prospect of moving this
process into a survey as well (Section 8.7.4, p216).

4.4. Allocating a Subset of Questions to Each
Survey Participant

Another way in which the problem of too many questions can be addressed is by
only allocating a subset of questions to each expert. Thus, instead of each expert
answering enough questions to produce an entire BN structure by themselves, they
are producing fragments of BNs which are collated into an integrated BN structure.
Figure 4.8 highlights the portion of the flowchart related to this process. When
an expert begins the survey, they will be presented a set of questions that is only
a subset of all possible questions.
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Variables
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Produce
BN Structure

Collate
Answers

Identify
Anomalies

Resolve
Anomalies

Finish

Classify
Variables
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Questions

Figure 4.8.: After generating all of the survey questions, a subset of these are
allocated to each expert so that no one person needs to answer every question.
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Figure 4.9.: Screenshot from BNE software configured with variables from the
insurance network.

4.4.1. What is Allocated?

As discussed in Section 4.2, questions in the survey are of the form “Does X
influence Y ?”. Although any individual question can be allocated to any expert,
the BNE software allocates specific batches of questions of the form “Do any of
{A,B,C} influence Y ?”. That is, instead of asking “Does risk aversion influence
cost to insurer for clients car?” and “Does vehicle age influence cost to insurer for
clients car”, they are grouped together to form “Do any of the following influence
cost to insurer for clients car?” (Figure 4.9). These questions allow participants
to focus their cognitive energy on one variable at a time, rather than jumping
around to disparate questions. Section 8.7.5 (p216) discusses other ways in which
questions can be grouped, for example, to reduce the number of parents of any
given node making CPT elicitation easier.

4.4.2. Question Allocation Strategies

When a new expert starts to undertake a survey, they will be allocated a set
of questions. The most basic allocation strategy is to allocate random questions
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to each expert. Alternatively, after classifying variables into specific categories
(Section 4.3), then experts could nominate or be assigned to an area of expertise
that they are most familiar with, resulting in only being allocated questions from
variables in that area. This may not be suitable for the basic classes described
at the beginning of Section 4.3 (Background, Mediating, Problem and Symptom
variables), however could become very useful if using more specialised variable
classes, as described later in that section. Note that this must be done with care,
as Section 2.3.5 (p47) explains pitfalls with previous research that has neglected
to properly define what constitutes an “expert” for the purposes of elicitation.
The decision of why specific groups were allocated to specific experts should be
communicated clearly to stakeholders.

If the survey was to be conducted in an offline setting (i.e. with pen and paper)
then the questions would need to be allocated to participants before printing and
sending mailing the surveys. In such a case, the level of non-responses to the
survey would likely result in certain questions getting several participating experts
to answer them, with others getting few or none.

Given the workflow presented in this thesis is for an online survey, the questions
can instead be allocated at the time a participant signs up. This enables questions
that have been answered the least number of times to be allocated to the next
participant who logs in. The evaluation in Chapter 5 used this method, although
it resulted in a slight problem. The BNE software chose questions for allocation
if they had been allocated to the fewest people, whereas they should have been
allocated after being answered by the fewest people. This issue was only identified
after the evaluation surveys had been completed.

4.4.3. How Many Allocated Questions is Enough?

There are four measures which are important when deciding how many questions
to allocate to each expert:

1. How many questions are there to be answered in total (ntot)?

2. How often should each question be answered by an expert (a)?
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3. How many experts are available (ne)?

4. How many questions are allocated to each expert (nq)?

If it is unknown how many experts are available and able to contribute, then it
is difficult to know how many questions each expert should be asked to answer.
As such, often only ntot is known for sure. This is shown in the following formula,
restated in three ways:

ne = ntot

nq

× a (4.1)

a = ne × nq

ntot

(4.2)

nq = ntot

ne

× a (4.3)

If there is a fixed number of experts that are known and have agreed to participate
before the survey begins, then the equation becomes simpler. But this may not
always be the case, in which case ntot is the only fixed value, being defined by how
many variables there are and what classes they fall into, once the variables and
classes have been decided on (see Section 4.3). With these formulas, the required
number of experts can be decreased by either: decreasing the required number of
times a question should be answered (a), or increase the number of questions to
allocate to each expert nq, and hence increase the time required of them. Other
than those three options, the only option remaining is to recruit more experts
to participate (ne). In the future work chapter, a method of active learning is
discussed to allocate more hotly debated questions to more experts (Section 8.7.7,
p217).

The BNE software provides a user interface for estimating the workload based on
ntot, ne, a, and nq. This enables administrators the ability to explore how many
responses can be expected for their specific survey (Figure 4.10).

Advantages of Allocating a Subset of Questions The advantage of allocating
only a subset of questions to each experts is that it helps to alleviate the knowledge
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(a) When there are 575 questions and 50 parti-
cipants, then requiring 5 experts per question
results in 58 questions allocated to each ex-
pert, for an estimated time of 58 minutes.

(b) Lowering the value for a to 4 results in an
estimated 12 minute time saving for each ex-
pert.

Figure 4.10.: Visually exploring parameters for allocating questions to experts
using the BNE software.

bottleneck of KA. Doing so will help encourage contribution from a wider amount
of experts, because they need only commit a smaller amount of time than they
otherwise would have had to. Also, it provides for the option to ensure experts
answer questions about their area of expertise, and are not forced into other areas
that they are less familiar with.

Disadvantages to Allocating a Subset of Questions In traditional KEBN,
each expert usually has the opportunity to contribute to the entire model as a
whole. This is not the case when only a subset of questions are allocated to
each expert, answered by participants on their own, without necessarily discussing
with other experts, and then collated automatically without their further input
(see Section 4.5). In addition to perhaps making the experts unsatisfied because
they are not able to contribute to the entire model as a whole, there is also the
possibility of anomalies being introduced into the BN structure once each of the
experts’ responses are brought together. The following section discusses in much
greater detail the potential for these anomalies to occur, and also solutions for
resolving them.
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4.5. Collating Answers

The previous sections discussed allocating multiple questions to each expert, with
each question being answered by multiple experts. After collecting the responses
from each expert, there needs to be a principled way to decide what the “ground
truth” of the question is. The goal of this part of SEBN is to produce a single BN
structure. For each question “Does X influence Y ?” and the multiple responses to
that question, a final answer must be decided upon. Once this has been calculated,
then the BN structure can be created. If the answer to “Does X influence Y ?” is
yes, then an arc exists from X → Y , otherwise no arc is included in the structure.
The choice to include or exclude an arc should take into account all responses to
the relevant survey question (Figure 4.11).
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Figure 4.11.: Collation of answers is the part of the process where multiple
answers to the same question, each from different experts, are combined to
decide on the “best” answer.

This section will start with the majority vote algorithm which is simple but often
dependable (Bachrach et al., 2012). This will be followed by a discussion of the
Expectation Maximization (EM) algorithm (Section 2.4.2, p51). More advanced
topics are discussed briefly earlier in this thesis (Section 2.4.2, p50) and could
equally be used for collating responses, but are omitted due to the scope of this
research project. The concluding chapter discusses how future work could extend
SEBN to include a greater range of collation algorithms (Section 8.7.6, p217). The
evaluation in Chapter 5 will further investigate the ability of majority vote and
EM to collate participants responses together so that the trade offs as to which
is preferable are better understood. The BNE software implements both majority
vote and EM collation algorithms.
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Majority Vote The majority vote collates responses to estimate the correct an-
swer to a given question. Therefore, for this project, it entails calculating how the
majority of experts answered a question of the form “Does X influence Y ?”. If the
majority say it does, then an arc between X → Y is inserted into the collated BN,
otherwise the arc is omitted.

Note that it is not necessary to specify that 50% of respondents is the cutoff
point for deciding on the “majority” response for a question. It may be that
20% of experts thinking a particular relationship exists is enough to be confident
it should be included in the model. Chapter 5 evaluates different thresholds for
what constitutes a majority and what effect that has on the resulting network
structure.

Expectation Maximization Algorithm Dawid and Skene (1979) presents an al-
gorithm for applying the EM algorithm to the task of combining multiple responses
into a single model. To adapt their model for the purpose of collating responses
into a BN, some terminology should be modified. In the Dawid and Skene (1979)
model, the goal was to figure out the true state of a patient, based on the mul-
tiple responses they gave to different clinicians asking about their welfare. In BN
collation, the goal is to combine multiple responses to a single question, in order
to figure out what the best estimate at the correct answer to that question is.
Therefore, the clinicians should be thought of as the experts, and the patients
should be thought of as an arc in the collated BN. A response that a patient gives
to a clinician is akin to a response given by an expert to a specific question of the
form “Does X influence Y ?”. Other than that, the algorithm can be adapted as
is to the task of collating responses. The EM algorithm can also be implemented
such that the prior probability of any given arc existing in a network is provided.
As this prior probability increases, the collated BN structures will trend towards
more arcs being included. Setting a lower prior implies that it is more difficult
for an arc to be considered part of the collated structure, resulting in less arcs.
Chapter 5 investigates priors of various levels to see how they impact the resulting
network structure.
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4.5.1. Note on Times When Multiple Models can be Created
and Tested

It is worth noting that if SEBN was only used to elicit BN structures, and the
CPTs were to be generated using data, then SEBN need not worry about one “fi-
nal structure”. Rather, the approach could be more akin to data driven, search and
score based BN structure induction (Section 2.2.3, p29). Where previous structure
induction techniques often make use of independence tests between variables to
decide if they should be considered related, this approach could use the collated
responses from the experts. This would result in many different candidate struc-
tures, which could be compared and searched through using relevant heuristics.

However, when the CPTs are going to be elicited from experts, it is preferable to
do so only once. Thus, it is ideal to settle on one authoritative network structure
before proceeding to the CPT stage.

When collating, there are some caveats which prevent a valid network from being
able to be produced. The following section will discuss in greater detail certain
considerations that will help ensure the elicited network is valid, and appropriate.

4.6. Identifying and Dealing With Anomalies

One issue with collating multiple responses into a single BN structure is the high
potential emergence of anomalous structures. There are also optimisations that can
be proposed based on the structures present in the network. Figure 4.12 highlights
two processes for both identifying and resolve anomalies respectively. This section
will discuss two different areas whereby anomalies can be identified and dealt with.
This is followed by a discussion about identifying opportunities for further refining
the resulting BN structure collated from survey responses (Section 4.6.3, p97).
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Figure 4.12.: After collating answers, the structure is searched for anomalies to
be resolved by the experts.
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Figure 4.13.: Three seemingly valid causal relationships that form a cycle when
combined . In order to make a valid BN structure, one of the valid assumptions
will have to be disregarded to break the cycle.

4.6.1. Cycles in Network, Resulting in an Undirected or Cyclic
Graph

Given the nature of directed graphs, it does not take much to introduce cycles,
which prevent a Directed Acyclic Graph (DAG), one of the main requirements
for a BN, and thus are not legal structures. For example, Figure 4.13 shows an
example where two experts specify different and seemingly valid answers about
the causal relationships between three variables. However, when combined, the
network contains a cycle. This is one example, but cyclic relationships are not the
only consideration.

In addition to the ease with which cycles can be introduced, the number of intro-
duced cycles can be quite high, making it difficult to know the best arcs to remove
to ensure the graph is acyclic. Figure 4.14 shows an example whereby a perfectly
valid DAG is turned into a graph with 5 different cycles after the introduction of
a single arc F→A.

Cycles in the network structure are perhaps the easiest anomaly to identify, due
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Figure 4.14.: Example of how a legal DAG can end up with multiple cycles after
introducing one relationship.

to the fact they don’t need human input to be discovered. There are numerous
algorithms to identify cycles (e.g. Bang-Jensen and Gutin, 2009; Johnson, 1975;
Tarjan, 1973; Tiernan, 1970). There is also a solution to the presence of cycles -
reverse or delete one or more arcs. The problem is prioritising which arcs should to
be modified in order to provide a valid network structure, while having the smallest
impact on the originally elicited structure. It should be noted that all arcs should
be considered important, or else they would not have passed the collation stage.

Cycles can occur before collating questions too, based on the responses of a single
expert. However it is not beneficial to resolve them at this stage. Doing so would
require more effort from the experts, for little reward - given that the number
of global cycles introduced in the collation stage would far outweigh the locally
introduced cycles.

In the paper explaining the Grow-Shrink Markov Blanket Algorithm for indu-
cing BN structure (Margaritis and Thrun, 1999), an algorithm is proposed which
ensures the structure is acyclic. A graph which contains cycles often contains mul-
tiple cycles (e.g. Figure 4.14), and the larger the graph, the larger the potential
for many cycles. Each cycle contains multiple arcs of the form X→Y, some of
which will appear in multiple cycles (but not multiple times in a single cycle).
The algorithm from Margaritis and Thrun (1999) proposes reversing or removing
the arc which is involved in the greatest number of cycles, and then restarting the
process. In Figure 4.14, this would be the arch F→A, involved in all 5 cycles,
compared to, e.g., A→C which is only included in 3. Algorithm 4.3 paraphrases
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that algorithm in pseudo code.

Algorithm 4.3 Removing cycles from a directed graph, adapted from Step 4 &
5 of Margaritis and Thrun (1999, p4-5)
1: function RemoveArcs_MargaritisThrun(graph)
2: while HasCycles(graph) do
3: ~cycles← FindCycles(graph)
4: problemArc← MostFrequentArc( ~cycles)
5: graphnew ← ReverseArc(graph, problemArc)
6: if HasCycles(graphnew) then
7: graphnew ← RemoveArc(graph, problemArc)
8: end if
9: graph← graphnew

10: end while
11: end function

Other Algorithms More Specific to BNs The above approach is generic in that
it works with any DAG structure. The future work chapter of this thesis explores
some different approaches which take into account specific features of BNs, such
as sensitivity and arc strength (Section 8.7.8, p218).

4.6.2. Indirect vs Direct Relationships

Sometimes there is two separate causal mechanisms which allow one variable to in-
fluence another. If one of these mechanisms is via one or more mediating variables
(i.e. X influences Z, because X changes Y which also influences Z) and the other
influences the variable directly, then the result is an indirect and a direct relation-
ship respectively. In the example shown in Figure 4.15, Risk Aversion → Driving
History is the direct relationship, whereas Risk Aversion → Senior Training →
Driving Skill→ Driving History is the indirect relationship that may explain the
same phenomenon.

Although it is quite plausible to have a BN with both such relationships in them, it
is also a hint that the entire indirect + direct relationship could be better encoded
purely with the indirect relationship (van der Gaag and Helsper, 2002). These
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mediating variables enable BNs to properly encode the conditional independencies.
It will also reduce the complexity of the BN by requiring a significantly smaller
CPT for the child node, as it has less parents.

Risk

Senior
Training

Driving
Skill

Aversion

Driving
History

Figure 4.15.: Example of a direct, potentially redundant relationship in the in-
surance network (Binder et al., 1997) “Risk Aversion → Driving History”. It is
potentially redundant because the indirect mediating chain of “Risk Aversion
→ Senior Training → Driving Skill→ Driving History” may be a better way to
explain the relationship.

Due to the nature of this preference for indirect relationships, direct relationships
that are better represented by indirect relationships will be referred to as redund-
ant. Also, seeing as not all of these indirect and direct relationships result in a
redundant relationship, they will further be termed potentially redundant until
shown to be otherwise. The indirect relationship which hinted at the potentially
redundant relationship will be referred to as the mediating chain.

This can be seen as similar to the Grow/Shrink algorithm (Margaritis and Thrun,
1999), in which a Markov blanket is built for each variable by iteratively adding
variables that the variable is dependent on (the grow stage). However this includes
variables which may be made independent by the inclusion of subsequent variables
into the blanket. As such, each variable in the blanket is then iterated over in order
to see if it can be removed (the shrink stage). The similarity with potentially
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redundant relationships is that these potentially redundant relationships may be
quite important on their own. However, with the inclusion of more dependencies
(ala the grow stage) mediating chains may be introduced. Once a mediating chain
is identified and a direct relationship made redundant, then it should be removed
(ala the shrink stage).

Potentially redundant relationships and their associated mediating chains can be
identified using the algorithm shown in Algorithm 4.4.

Algorithm 4.4 Search for all the potentially redundant relationships in a DAG.
1: R ← ∅ . Potentially redundant relationships and their mediating chains
2: G← DAG from Bayesian Network
3: V← variables in G
4: for all V as v do
5: P← parents of v in G
6: for all P as p do
7: Traverse G backward starting at v but skip direct parent p
8: if Hit p while traversing then
9: r ← (p→ v) . Potentially redundant relationship
10: m← Traversed path from v to p . Mediating chain which makes r

potentially redundant
11: R ← R ∪ {(r,m)}
12: end if
13: end for
14: end for

4.6.3. Optimisations to Aid in Subsequent CPT Elicitation

In addition to anomalies which cause undesirable behaviour, it is also possible to
search for patterns which hint at opportunities to optimise the network structure.
Certain configurations of nodes (known as the local structure of a BN) hint at
the ability to elicit CPTs in a much more robust and also optimised way. In the
following paragraphs, three different opportunities for optimisation are discussed,
namely NoisyOR, NoisyMAX, and Ranked Nodes. Additionally, a “mixed bag”
will be discussed, where knowledge engineers and experts are able to look at the
network and make judgments on whether it can be improved in any way. Note that
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the evaluation in Section 5.6 (p141) will only investigate NoisyOR and NoisyMAX.

NoisyOR One type of distribution that needn’t be parameterised by a full table of
conditional probabilities that was identified early on with regards to development
of BN theory, was the NoisyOR node (Pearl, 1986; Henrion, 1987). These are
common when, for example, there is a node modelling the presence of a symptom
and it has several possible causes - each of which is sufficient to trigger the effect,
independent of the other causes. If each of the parent nodes and the effect node
are all boolean, then a NoisyOR node can reduce the parameters required for the
CPT from 2n to n (where n is the number of parents).

• Criteria for NoisyOR node:

– Child is boolean.

– Child has more than 1 parent.

– All parents are boolean.

– Activation of any parent is enough to activate child, independent of
other parents.

NoisyMAX A NoisyMAX node (Pradhan et al., 1994; Henrion, 1987) is a gen-
eralisation of a NoisyOR node. The differences are that both the target and the
parent nodes are all partially ordered. As with NoisyOR, the presence of any
parent node being activated is enough to activate the child. When the child is an
n-ary node, then if any one of the parents takes a value which results in the child
having a particular value, then the child will take that particular value. As such,
the child node will take the maximum value that it is able do, based on the indi-
vidual state of each parent. This will reduce the size of the CPT from schild×

n∏
i=1

si

to
n∑

i=1
(si × schild), where schild is the number of states the child variable takes, si

is the number of states that the parent variable i takes, and n is the number of
parents.

• Criteria for NoisyMAX node:

– Child is partially ordered.
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4.6 Identifying and Dealing With Anomalies

– Child has more than 1 parent.

– All parents are partially ordered.

– Any parent can cause child to take a given state, independent of other
parents.

– Child takes highest value of all possible based on individual parent
conditioning.

Ranked Nodes Although BNs have been shown capable of including continuous
random variables, many people still choose to discretize them to make the solution
more tractable and understandable. As such, it is common to see variables in BNs
with states such as {V ery Low, Low,Medium,High, V ery High}. Such variables
can be termed “Ranked Nodes”. Fenton et al. (2007) discussed how to reduce the
burden of CPT elicitation for BNs that leverages ranked nodes. The requirements
are that the child node, and all of its parents are ranked nodes. In the evaluation,
Fenton et al. (2007) discuss two evaluations that resulted in reductions in CPT
parameters by 84% and 93% respectively. Note that this would be more difficult
to integrate into SEBN compared to NoisyOR and NoisyMAX as a lot more input
from knowledge engineers and experts are required to ascertain whether the Fenton
et al. (2007) approach can be used.

• Criteria for Ranked Node

– Child is partially ordered.

– Child has more than 1 parent.

– All parents are partially ordered.

Manual Analysis by Knowledge Engineer In addition to creating a modular
implementation that facilitates additional anomaly or optimisation detection, there
is also the possibility for a more general approach. That is, present the network
structure to an experienced BN practitioner, such as the researcher running the
survey, and let them select arbitrary parts of the structure, and propose arbitrary
questions for experts to answer. For example, if they noticed that a particular
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Chapter 4 Building BN Structure Through Survey Based Elicitation

part of the structure could be simplified by adding a new node, then they’d select
that part of the network, enter some text explaining what they are proposing, and
also enter a few possible responses that they’d like to elicit from the experts. This
way, in addition to the automated detection of specific anomalies and optimisation
possibilities, there is also the ability for an experienced person to have the final
say as to any strange looking areas of the structure.

Moving forward, such cases could be generalised if they are observed to occur
frequently. Such generalisations could then be built into future versions of software
such as BNE to make the elicitation process less burdensome.

4.7. Producing BN Structure

Start
Obtain

Variables
Generate
Questions

Produce
BN Structure

Collate
Answers

Identify
Anomalies

Resolve
Anomalies

Finish

Classify
Variables

Allocate
Questions

Figure 4.16.: After resolving anomalies introduced by collating multiple responses
to each question, a final BN structure is output, ready for use in popular BN
software packages.

Once arcs have been collated and any resulting anomalies resolved, then the BN
structure is completed. The nature of the questions asked in the survey are that
each question maps to an entry in a n× n adjacency matrix. Thus, it is a matter
of taking the collated response to each question (Section 4.5) and creating an arc
between the relevant variables if appropriate.

The BNE software supports outputting BNs to the Netica .net format (Norsys Soft-
ware Corp, 2016), a summary matrix in HTML showing the strength of each arc
(using the majority vote to indicate strength), and .svg graphics of the network
structure using the graphviz software (Gansner and North, 2000), to visualise the
network.
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4.8 Chapter Summary

Thus, there is no requirement for manual intervention from the knowledge engineer
to go from expert responses to a working model that can be imported into BN
software such as Netica (Norsys Software Corp, 2016). This directly addresses
Proposition 2 (p61), “Questionnaire method will require less time from researcher”.
Ensuring that they don’t need to take extra steps to go from survey responses to
working models which can be used straight away.

4.8. Chapter Summary

This chapter explained in detail the series of steps required in order to use sur-
veys to elicit the structure of a BN. A summary shown in Figure 4.17 presents an
overview of these steps. To evaluate this technique, Chapter 5 presents a detailed
experimental evaluation of the technique presented in this chapter. The future
work described in Section 8.7 (p214) discusses some ideas for extending and im-
proving this technique. The following chapter presents an evaluation of SEBN as
shown in this chapter. After this, Chapter 6 documents the remainder of SEBN
in order to allow elicitation of CPTs to parameterise a BN structure. Combining
both chapters results in a comprehensive method for eliciting entire, usable BNs
from online surveys.
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Figure 4.17.: Summary of each of the stages in the process discussed in this
chapter.
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5. Evaluating Structure Elicitation

This chapter details the evaluation that took place for this project, with regards to
eliciting the structure of BNs via SEBN (Chapter 4, p73). As discussed briefly in
Chapter 3, there are two types of evaluation that took place. These are ex ante and
ex post evaluations (Pries-Heje et al. (2008); Venable et al. (2012)), which roughly
equate to “evaluation during the design process” and “evaluating the artifact after
it is completed”. These took place in both naturalistic and artificial settings.

This chapter will be organised as follows: Section 5.1 is dedicated to describing
the method of evaluation. It discusses the experimental setup, the choice of par-
ticipants, and briefly the online software system used to conduct the evaluation.
Section 5.2 presents the results of collating the responses from the survey into
several different candidate BN structures. This is followed in Section 5.3 by a
comprehensive evaluation of the elicited BN structures. This section provides a
critical analysis of the findings, comparing the network produced during evalu-
ation to an existing gold standard. It presents several different metrics for which
to compare the two networks. The time taken of participants is documented and
discussed in Section 5.4, while Section 5.5 investigates whether SEBN is able to
correctly infer the expertise of each participant based on their survey responses.
Finally, Section 5.6 investigates two optimisations that can be performed to the
BN structure, in order to ease subsequent CPT elicitation. The results from this
chapter are used to address the propositions from Chapter 3 (p57) in the conclud-
ing chapter (Section 8.2, p195).
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Start

Participants
log on to

system and
register

Each is
allocated a
subset of

all questions

More
iterations
desired?

Answer
allocated
questions

Review
responses in

light of conflicting
opinions from
others, and

comment where
appropriate

Finish

Create several
candidate
BNs from

survey results

Evaluate
each

candidate
BN

Gold
standard
network

Yes

No

Figure 5.1.: A broad overview of the process for conducting the evaluation survey
and analysing the results.

5.1. Experimental Method Used for Evaluation

In order to evaluate the propositions described in Section 3.3 (p60) and addressed
in Section 8.2, this evaluation conducted an online survey using SEBN via the BNE
software. This section will discuss the evaluation process, survey participants, and
the software used, and the duration of the survey. Discussion on the results of the
evaluation will be held off until later in this chapter.

5.1.1. Overview of Experimental Method

This evaluation elicited a BN structure using the method described in Chapter 4 (p73)
in order to compare with a known gold standard. Figure 5.1 shows a high level
overview of the evaluation. The domain chosen for the evaluation was car insur-
ance risk assessment due to the availability of an existing, published BN which
can be used as a gold standard for which to compare the survey results to.

The evaluation took place using an iterative approach. When answering questions,
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5.1 Experimental Method Used for Evaluation

participants were asked to provide comments on why they thought there was a
causal mechanism between two variables. Once the first set of questions were
answered by all participants, the software was configured for the next iteration.
In this and subsequent iterations, participants were invited to come back and
review their answers in light of decisions and comments made by other participants.
This is highlighted in Figure 5.1, whereby responses are continually reviewed each
iteration.

5.1.2. Note on the Iterative Nature of the Evaluation Survey

Although SEBN as proposed in this thesis does not suggest an iterative approach
to surveying experts, it was still included in this analysis for the sake of investiga-
tion. It was hoped that asking participants to consider their responses in light of
comments made by others would help facilitate discussion and aid them in coming
to the optimal solution. However, as shown in Section 5.1.4, the participation
drop-off rate between iterations was sufficiently problematic that there was not
enough responses in the later iterations.

5.1.3. Choice of Existing “Gold Standard” BN

The evaluation was conducted with respect to an existing network in the field
of risk assessment for car insurers, which will henceforth be referred to as the
“insurance network” (Binder et al., 1997). The structure of the network was elicited
by researchers and verified by an expert, similar to what might be expected in
traditional KEBN1. It was subsequently parameterised using historical data. As
such, the parameterisation was not a traditional KEBN approach in the way it
made use of experts. The BN consists of 27 variables, 52 arcs, and a total of 1419
conditional probability values.

1The original insurance network article (Binder et al., 1997) doesn’t clarify how the structure
was elicited. However subsequent private communication with the authors explained that the
network was elicited by the researchers based on their knowledge of the risk factors, and then
shown to somebody with experience in the insurance industry.
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The insurance network has been published, peer-reviewed, and is publicly available,
including the entire network and its probabilities2. Also, it is from a field that is
not too specialised, in order to facilitate the recruitment of participants. This is
elaborated on in a following section, which documents the process of recruiting
participants for the evaluation survey.

5.1.4. Recruiting Participants for Survey

This section begins with a discussion of the rationale behind the participants that
were chosen. This is followed by an analysis of the participation rate among those
who did sign up for the evaluation survey.

Choice of Participants

The participants for the evaluation study were drawn from a pool of lay people who
have experience driving. This is somewhat similar to how psychology researchers
often utilise undergraduate students as a proxy for other populations (Wintre
et al., 2001). Although the practice is undesirable, given that undergraduates are
not representative of the broader adult population, it is still very common. Wintre
et al. (2001) explain that if the practice is to continue, research should at least
make a concerted effort to discuss the limitation of their findings in terms of being
generalisable to broader populations.

In this study, the choice to use lay people instead of experts came with pros and
cons. The pros are that they are easily accessible, numerous, and allowed for
multiple evaluation surveys to be conducted at little cost. The cons are that they
are not as expert as traditional experts, have less vested interest in trying to answer
the survey questions correctly, and have less of an appreciation for what they know
and don’t know. Despite this, they are a suitable population of participants in this
context for the following reasons:

By definition, people with experience driving have some level of expert-
ise.

2Not all published networks include all of the probabilities and relevant parameters.
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Although they are not what one would term “experts” in the field of car insur-
ance, they do have expertise with driving, and hence useful knowledge about the
relationship between variables involved with driving. This information can still be
elicited and incorporated into a BN model.

Variables in the car insurance BN are concepts that drivers would be
familiar with.

Examples of variables used in the car insurance network are the cost of cars,
driving skill, safety features of vehicles, etc. For the most part, these variables and
the relationships between them represent concepts that lay people with experience
driving would understand. There is almost no insurance specific variables or jargon
in the gold standard BN.

The survey utilised theories inspired by the field of crowd sourcing.

Despite SEBN as described in Chapter 4 and Chapter 6 being targeted towards ex-
perts, it is convenient that the collation techniques used by the method are drawn
from crowd sourcing. The reason is that in crowd sourcing, the goal is to elicit
information from multiple people of unknown expertise, and decide which inform-
ation is useful and which is not. If there are adversarial participants (intentionally
answering incorrectly) or people of less expertise, their answers will be given less
weight.

If the survey produces good BN with people of less expertise, it should
produce a better network with those of higher expertise.

Finally, and most importantly, there was no reason to believe that people with
less expertise would contribute better knowledge than proven, qualified experts.
Thus, if the evaluation was able to show that people of less expertise can produce
a sufficiently good BN, then it is reasonable to assume that qualified experts would
produce a better BN. Unfortunately, not much can be said if the reverse was to
occur. That is, no information is gleamed about what experts may be capable of
if lay people are unsuccessful. This is a limitation of this research and discussed
further in Section 8.7.1 (p214).

The choice of participants is evaluated in a post-hoc manner in Section 5.7 to see
what can be learnt and how to improve future evaluations of SEBN.
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Summary of Participation

Chapter 4 discussed specifics about the choice of how many experts to recruit, and
how many times each question needs to be answered by a different expert (p87).
This evaluation left the number of experts (ne) as variable, in the hope that as
many people as possible could sign up. Experience with an earlier ex ante evalu-
ation showed that recruiting participants for the survey before it begins resulted
in people initially agreeing to participate, but then being unable to respond once
the survey started. Due to ne being left variable, the number of questions asked
of each expert (nq) or the number of times each question was allocated to an ex-
pert (a) had to be decided upon. As individual participants registered with the
online system to participate, they were allocated a number of questions, for which
the goal was to have each participant have the same number of questions. Thus,
nq was fixed at 4 variables for which to ask “Does any of {A,B,C, ...} influence
X?”. The configurations of variables and variable classes in this survey meant an
allocation of 4 variables resulted in 88 specific “Does A influence X?” questions
that required answering.

Figure 5.2 shows that even before the first question, 11 of 43 registered participants
dropped out. The first iteration started with 32 of which 23 finished. For the
remaining two phases 11 participants dropped out, resulting in 14 participants of
the original 43 completing all three phases.

Figure 5.3 shows how often each of the 24 groups of questions of the form “Do any
of {A,B,C, ...} influence X?” were answered by the end of each iteration. Note
how there is one variable PropCost which received zero answers in the second and
third iteration. In addition, six variables only had a single response in the final
iteration, which means that there is no benefit to collating responses from multiple
participants, as there are not multiple participants to collate from. Despite the
slowing drop off rate shown in Figure 5.2, and the fact that there were still 14
participants who completed the final stage, there was not enough data to collate
responses after the third phase. As such, only the first round of data was used,
and SEBN described in Chapter 4 does not include an iterative approach.
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Figure 5.2.: Visualising the participation dropout between iterations.

5.1.5. Software Used for Evaluation Survey

To conduct the online elicitation survey, custom software was written which im-
plemented SEBN as described in Chapter 4. This section will briefly introduce the
software, and a more in depth discussion about decisions taken in the design and
development of the software is presented in Appendix A. The software is called
BNE (BN Elicitator, Serwylo, 2013) and is published under the GPLv3 open source
license.

The software is a web application that enables participation from anybody with a
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Figure 5.3.: Number of responses received about each variables questions for each
iteration.

web browser connected to the internet. It facilitated people registering themselves
(using either an email and password or a Facebook account), or the administrator
selectively recruiting experts and granting them access to the survey. There is no
limit to the number of people who are able to participate in a survey, and each
new user will automatically get allocated a set of questions. The result of a larger
number of people signing up means that each question gets answered by a greater
number of people.

The administrator of the survey software has the freedom to decide when to move
onto the next iteration. After the first iteration is closed, people are no longer
allowed to register to participate in the survey, only those already registered can
proceed to subsequent rounds. At this point, they could view the responses given
by other participants. To reduce the burden on the participants, questions which
had 100% agreement in the prior iteration are hidden in subsequent rounds .

5.1.6. Duration of Evaluation Survey

The evaluation took place over a period of approximately one month in 2013.
Three iterations were performed that took 9, 11, and 14 days respectively. The
initial goal was to have three iterations at one week each, but it was made flexible
to ensure a higher response rate. Each participant was alerted to the fact that it
may take up to a month for all iterations to be completed, at a time of about 30
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minutes each. The time at which the iteration was moved to the next iteration
was at a time chosen by the researcher, after the amount of responses slowed down
sufficiently.

5.2. Constructing the BN Structure From Survey
Responses

As discussed in Section 3.3.3 (p65), it is important for SEBN to be capable of
producing a valid and appropriate BN. If the method is not able to produce a
valid BN or it is only able to produce valid but poor BNs, then it cannot be
recommended as a technique for creating BNs at this stage. As such, a lot of the
evaluation will be focused on the output of the survey process, and whether it
constitutes a “good” BN, for various definitions of the word “good”.

Firstly, Section 5.2.1 will discuss how the various responses to questions were col-
lated together into a directed graph. Then, Section 5.2.2 investigates the process
of ensuring this graph is acyclic, a key requirement for using a graph as the struc-
ture of a BN. Once this has been done, the remainder of this section is devoted to
visualising the resulting structures.

5.2.1. Collating Responses into a Directed Graph

As discussed in Section 4.5 (p90), responses can be collated together in a number
of ways. This evaluation compares two different methods: majority vote and the
EM algorithm, referred to as “Dawid & Skene” throughout this thesis as Dawid
and Skene (1979) were the first to apply this statistical technique to collating
multiple responses. Each of these two approaches are capable of producing multiple
candidate networks, which are discussed in detail below.

Output from the Survey Software The result of the online surveys is a set
of multiple participants’ responses to questions of the form: “Does X directly
influence Y ?”.
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Overview of the Different BN Structures Being Evaluated Shown in Table 5.1
is a list of different networks which will be measured during this evaluation section.
The Majority Vote (Maj) and Dawid & Skene (DS) network structures represent
those which are the result of collating responses from the evaluation survey in
varying ways. Both together are referred to as the Survey networks.

The result of the majority vote algorithm varies depending on the threshold of
“how many people are required to agree” for an arc to be included in the final
structure3. As the number of people required for agreement decrease, the number
of arcs in the network will increase. This was done using custom software written
for this project and included in the BNE software. The six Maj structures are
collated by including all arcs which at least 2, 3, 4, 5 or 6 participants agreed on,
resulting in five different network structures for evaluation4. They were created
by counting the number of responses advocating for a particular arc, and if it was
above the threshold, including it in the network structure.

DS structures are collated by running the EM algorithm over participants re-
sponses and specifying a prior probability of any particular relationship between
two variables existing. With no other information other than the Gold network,
the prior probability of an arc should be ~7%. This is because the Gold network
has 52 out of a potential 702 arcs5. Thus, this chapter evaluates networks with pri-
ors of 0.1%, 1%, 5%, 10%, 15%, 20%, 25%, 30% and 35%. If the prior is decreased,
then the number of arcs will also decrease. The reason for this choice of priors is
because empirical findings during evaluation showed that 0 < prior ≤ 0.1% resul-
ted in a network structure with zero arcs, the same as Otherzero described below.
Additionally, prior > 35% included so many arcs as to represent a network struc-
ture that was computationally intractable to analyse. The details of the algorithm
are explained in greater detail in the original paper (Dawid and Skene, 1979) or
in Section 4.5 (p90). The implementation of the EM algorithm incorporated into
the BNE software was from the Troia software package (Project Troia, 2013).

3This means that technically the word majority is incorrect, but the term “majority vote” has
enough meaning to make it both worthwhile and useful.

4The Maj1 structure had so many cycles as to make the cycle detection algorithm incapable of
calculating them all due to computational constraints. Thus, it was left out from the analysis.

5The 702 possible arcs come from n2 − n, given that variables cannot influence themselves. It
also does not take into account the variable classes discussed in Section 4.3 (p80)
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Label Description

Gold
“Gold Standard”

Existing network from literature (Binder et al., 1997).
Maj2 “Majority vote”
Maj3
Maj4 Subscript represents the number of participants
Maj5 required to agree before arc is included in this BN.
Maj6

Maj {Maj2, ... ,Maj6}
DS0.001
DS0.01 “Dawid & Skene”
DS0.05
DS0.10 EM algorithm for collation (Dawid and Skene, 1979).
DS0.15 Subscript represents the prior probability of any
DS0.20 single arc between two variables being included in
DS0.25 this BN. Lower prior means less likely to include
DS0.30 arcs, and thus smaller networks.
DS0.35

DS {DS0.001, ... , DS0.35}

Learntmmhc
“Learnt from existing algorithms”

Learntrsmax2
These are learnt by sampling data from the
Gold network then using that data as

Learnttabu
input to the mmhc, rsmax2, and tabu algorithms.

Learnt {Learntmmhc, Learntrsmax2, Learnttabu}

Otherrand

“Random network”
Generated from random.graph function
in the bnlearn software (Scutari, 2010).

Otherzero
“Zero connections”

Each node is independent of all others.
Other {Otherrand, Otherzero}
Survey Maj ∪ DS

Eval Survey ∪ Learnt ∪ Other

Table 5.1.: Various different BN structures that will be referred to throughout
this evaluation, and their meaning. The Maj and DS (aka Survey) structures
are created from data obtained during evaluation, while the remainder are used
in order to have something to compare these to.
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The three Learnt network structures were learnt using existing algorithms provided
by the bnlearn software (Scutari, 2010). A data set to use for learning the net-
works was sampled from the Gold network and then given to the relevant learning
function.

Finally, theOtherrand andOtherzero networks are provided for comparison. Otherrand

is constructed using the random.graph function from bnlearn, whereas Otherzero

is a network with zero arcs.

5.2.2. Removing Cycles From the Collated Graph

Many of the evaluation mechanisms being used later in this chapter depend on
a valid BN structure being present. Thus, it was important to go through the
anomaly resolution phase before evaluating6. Section 4.6 (p92) discusses how to
ensure that a valid DAG is output after the process of combining responses to-
gether. This section discusses in more detail how that was undertaken for this
specific evaluation.

The implementation in the BNE software follows the Margaritis and Thrun (1999)
algorithm described in Section 4.6 (p92). It made use of the JGraphT (Naveh
and Contributors, 2015) implementation of the Johnson (1975) cycle detection
algorithm.

Cycle removal for DS0.05 Table 5.2 shows the arc reversals that occurred to en-
sure the DS0.05 network structure was acyclic. Unfortunately, some of the reversals
result in seemingly non-causal relationships. For example, the previously causal
relationship of Age→RiskAversion, is reversed, resulting in RiskAversion→Age.
Although a relationship between the two has been observed by participants taking
the survey and thus the process should retain some sort of association, it is un-
desirable. Specifically, it may cause issues when subsequently eliciting CPT values,
where non-causal questions are then posed. This could greatly confuse people and

6Note that some of the evaluation metrics, such as SHD, are able to be calculated without
removing cycles. However, it was deemed unhelpful to compare invalid Survey network
structures (i.e. those with cycles) to others which have stricter constraints, such as the
Learnt structures.
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result in worse CPT values and in general a BN. This is discussed in greater detail
in the Future Work chapter (Section 8.7.8, p218).

Iteration # Cycles Worst arc Appeared in (cycles)
1 34954 ThisCarCost → Age 22570
2 3355 ThisCarCost→ MakeModel 9498
3 2886 DrivHist→ DrivQuality 1443
4 1443 DrivHist→ DrivingSkill 933
5 510 OtherCar→ DrivingSkill 351
6 159 SeniorTrain→ RiskAversion 137
7 22 DrivHist→ SeniorTrain 5
8 17 RiskAversion→ Age 4
9 13 Accident→ SeniorTrain 3
10 10 Theft→ HomeBase 2
11 8 DrivQuality→ DrivingSkill 2
12 6 Airbag→ MakeModel 2
13 4 Theft→ AntiTheft 1
14 3 Age→ DrivingSkill 1
15 2 Airbag→ VehicleYear 1
16 1 VehicleYear→ Antilock 1

Table 5.2.: Iterations required to turn the DS0.05 graph into a DAG using the
Margaritis and Thrun (1999) algorithm. Each of the 16 iterations resulted in
the arc being reversed, not removed (See Appendix B for details of other Survey
structures).

Figure 5.4 shows an overview of each of the evaluation networks, and how many
arcs required modification to become a DAG. Note how as the Maj threshold
decreases or the DS prior increases, the number of arcs implicated in a cycle
increase, but less so with the DS networks.

5.2.3. Summary Matrices

In order to get a broad overview of the Gold and Survey network structures,
summary matrices have been employed (similar to Flores et al., 2011). These are
adjacency matrices whereby boolean “does this arc exist in the network” values
are shown by a black dot in this evaluation and continuous “strength of the rela-
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Figure 5.4.: Graph showing how many arcs were removed in order to get a DAG,
for each Eval network.

tionship” values are shown by the darkness of the background shading (darker is
stronger).

It is worth noting that the strength of a relationship in the Gold network is not
comparable to the strength in the Survey networks, because each uses a different
scoring algorithm to determine strength. However, they are useful in terms of
intra-algorithm (e.g. Maj3 vs Maj4) and intra-network (e.g. x → y vs x → z in
DS0.1) strength comparisons.

Original Network To begin, Figure 5.5 shows a summary matrix of the original
network. The strength of each arc was calculated by using the arc.strength
function from the bnlearn software package (Scutari, 2010). This in turn used a
technique whereby the overall BIC (Schwarz, 1978) was calculated for the network.
Then, each arc was removed from the whole network and the score re-calculated.
Those which caused the BIC to change greatly are said to have a strong relation-
ship, whereas those which tend not to affect the resulting BIC are weaker. For
example, in Figure 5.5 the relationship SocioEcon → GoodStudent is a particularly
weak arc, whereas Accident → ThisCarDam is very strong.
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Figure 5.5.: Summary matrix for the Gold network structure. Dark circles indic-
ate the presence of an arc, and the darkness of the background colour indicates
its strength.

Majority Vote Network The matrix in Figure 5.6a shows the summary matrix
for the network which includes all arcs agreed upon by at least one participant7.
The shades of grey indicate how many people out of six voted for a particular
relationship. Each question was allocated to six participants, but not everybody
answered all the questions that were allocated to them. As a result, Figure 5.6b
shows the same matrix, but this time the weights are shaded according to the
percentage of participants who included them. All of the variables that are said to
influence PropCost are much stronger. This is because only two people answered
questions relating to PropCost (see Figure 5.3), resulting in only two votes being
needed for a “strong” relationship (100% consensus among respondents).

Finally, Figure 5.7a shows the summary matrix for the Maj3 network. This was

7Note that with all summary matrices of Eval networks, there are variables which have been
removed from the network, resulting in empty rows/columns in the matrix. See Appendix D
(p257) for further details.
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(a) Strength based on the total number of people who answered
questions.

(b) Difference between strength of arcs in Maj1 network when
measured as the percentage of people who answered questions
less the absolute number of people who responded.

Figure 5.6.: Summary of theMaj1 BN. Black dots indicate a relationship between
the two variables, while the darkness of the cell indicates the strength of the
relationship.
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selected for inclusion here because later sections show that it is one of the “better”
network structures.

Dawid & Skene Network The summary matrix in Figure 5.7b shows the strength
of arcs in the DS network structures. It encodes the chance that the EM algorithm
would include any given arc in the network structure. The strength is ascertained
by considering the lowest prior probability at which an arc is still included. If
an arc is included despite a very low prior, then it is considered stronger. If an
arc is not included unless the prior is quite high, then it is assigned a weaker
strength. The arcs in the DS0.15 network are shown as black circles in the centre
of a cell.Note how there is quite a large number of arcs compared to the Gold
network and also the Maj3 network.

Difference Matrices In order to compare the Survey networks to the Gold net-
work to see how closely they align this section presents two difference matrices
(Figure 5.8). These are similar to the summary matrices shown earlier except
they show the intersection of two network structures. The Gold network is shown
as squares whereas the Survey network is shown in black circles. Also included are
arc strengths from the original network. This allows visual inspection of whether
missing or retained arcs are important to the original network. For example,
VehicleYear → Airbag in the top right of Figure 5.8a is a strong relationship
which is included in both networks, whereas Accident → ThisCarDam is a strong
relationship that is not present in either elicited network.

The two difference networks shown are the two of the better Maj and DS net-
work respectively, as measured in Section 5.3. The DS0.15 difference matrix in
Figure 5.8b includes a slightly higher proportion of strong arcs from the Gold
network which were not present in the Maj3 network. Most notable is the Driv-
ingSkill → DrivQuality arc. However, this comes at the expense of many more
false positives in the DS0.15 network structure which are not in the Gold network.
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(a) Summary matrix for the Maj3 network. The lightest cells
were included by three of the six allocated participants, and
the darkest were included by all six.
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(b) This summary matrix shows the strength of each arc as
defined by the EM algorithm for the DS0.15 network structure.
Arcs which are included despite a lower prior probability of
including arcs are darker. Those not included until the prior
probability for any given arc is high are lighter.

Figure 5.7.: Summary of Maj3 and DS0.15 network structures.
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(a) Difference matrix between the Maj3 and Gold networks.
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(b) Difference matrix between the DS0.15 and Gold networks.

Figure 5.8.: These difference matrices show the Maj3 and DS0.15 arcs in black
circles and the arcs from the Gold network in squares.
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Figure 5.9.: Number of arcs in the Gold and Eval networks (see Appendix C,
p254, for full data).

5.2.4. Number of Arcs in Network Structures

Figure 5.9 shows the number of arcs in the Gold and each of the Eval network
structures. It is desirable for networks to have a similar number of arcs as the
Gold network, to give it the best shot of encoding the same causal relationships
as that network.

From Figure 5.9, there is a clear progression in the Maj and DS structures where
the arcs decline with a higher threshold for what defines a majority, or a lower
prior for whether an arc exists or not in the EM algorithm.

5.3. Scoring the Evaluation Networks Against the
Gold Standard

The previous section provided an overview of the Eval networks and how they
were constructed. This section will take the Survey networks and compare them
to the Gold network using various metrics to evaluate how “good” they are. There
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are both qualitative and quantitative ways to evaluate a BN, with this research
performing primarily a quantitative evaluation.

With respect to quantitative evaluation, there is one overriding goal: Does the
network represent the same probability distribution as the original, and if not,
how different is it? This is important because one of the primary reasons that a
BN is used in problem solving is to factorise a complex probability distribution
into one which is more computationally tractable and understandable.

A somewhat more qualitative goal is to measure if the BN has the same structure
as the gold standard. Although vastly different structures can depict similar prob-
ability distributions it is still a useful metric of “goodness”. For example, if the
structure of the original network was learned from data, then it is unlikely that
the arcs represent causal relationships. However, when using traditional KEBN or
SEBN then it is more likely that the edges represent causality (Korb and Nich-
olson, 2011, p311). It turns out that the insurance BN used for evaluating this
research is mostly causal. Thus, it does make sense to compare the structures of
the Survey network structures with the original, to see how close they are.

The first metric used is the Structural Hamming Distance, which is a measure of
the qualitative similarity between the network structures (Section 5.3.1). Following
this is an investigation into the Receiver Operating Characteristic and F1 score
(Section 5.3.2) which are elaborations of the SHD that take into account whether
incorrect arcs are false positives or false negatives. Section 5.3.3 then moves onto
a more quantitative analysis of the networks, by parameterising them and then
seeing how close the probability distribution encoded by each evaluation network
compares to the Gold network. Given the poor results obtained by each of the
criteria described above and discussed below, Section 5.3.4 investigates further to
see what would happen to the results if less participants were participating, or
if they provided noisier responses. The goal is to get some insight into whether
the situation would reasonably be expected to improve if more participants were
added, or if participants were asked to answer more questions resulting in more
data.
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5.3.1. Scoring Networks Using the SHD Metric

The Structural Hamming Distance (SHD, Tsamardinos et al. (2006), Figure 5.10),
also referred to as the edit distance (Flores et al., 2011), can be described as
the number of operations that need to be performed to make two DAGs match
(Tsamardinos et al., 2006). As its name suggests, it is derived from the term
“hamming distance” which describes the number of characters which need to be
changed to go from one string to another (Hamming, 1950). When calculating the
SHD of two BNs, the operations which can be performed to transform one network
structure into the other (shown in Figure 5.10) are:

• Remove edge

• Add edge

• Reverse edge

VehicleYear

RuggedAuto

Antilock

Accident

PropCost

Airbag

(a) Snippet of the Original BN with six nodes
and four arcs.

VehicleYear

RuggedAuto

Antilock

Accident

PropCost

Airbag

(b) Similar snippet of the DS0.10 BN.

Figure 5.10.: Example of two network fragments with a SHD of three. Notice
the addition of Antilock → PropCost, the removal of Antilock → Accident, and
the reversal of VehicleYear → Antilock.

The SHD is a useful, although not definitive metric for comparing the structure
of two networks. It is not definitive, because it is still possible to have a BN
model accurately represent the same probability distribution, even though it has a
different structure. However, it is useful, because if both networks are elicited from
experts and the arcs are meant to represent causal relationships, then the omission
or addition of a causal relationship in one model does provide feedback about how
similar the models are. Given that the gold standard network had its structure

124



5.3 Scoring the Evaluation Networks Against the Gold Standard

elicited by experts (Section 5.1.3, p105), it would be ideal if the structure elicited
from this evaluation was similar. It would go to show that when using SEBN, even
though participants are only asked questions regarding a small subset of possible
relationships in the network, the overall structure after collating results is similar.
Alternatively, if the structure was completely different and no arcs were the same,
then that would provide evidence that SEBN tends to force people to think in
different, perhaps unintuitive, ways (Proposition 8, p66). The difference matrices
in Section 5.2.3 visualised this metric, but this section will quantify and investigate
it in further detail.

How Does SHD Impact on Other Scoring Metrics?

In order to check the impact of the SHD on the overall “quality” of the network, or
perhaps better termed, the ability of the network to represent the same distribution
that a data set was drawn from, additional analysis will be performed. This
analysis will not relate to the Survey networks specifically. Rather, it will take
the Gold network structure and see how it responds to random permutations which
increase the SHD from its unmodified state.

This analysis was conducted by iteratively performing a random operation on the
network structure (add/remove/reverse arc) that doesn’t introduce a cycle. This
augmented network was parameterising using 500 data points sampled from the
original network using the rbn function from the bnlearn R package (Scutari, 2010),
then scoring against the original using the BIC criterion.

Figure 5.11 shows that as the number of random perturbations (and hence the
SHD) increases the network quality decreases. This shows that a higher SHD
tends to have a detrimental impact on the ability to represent a similar probability
distribution as the Gold network.

SHD of Networks Elicited During Evaluation

The SHD of all Eval networks is shown in Figure 5.12. It is apparent that the
distance from the Maj and DS networks to the original is quite far. It also
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Figure 5.11.: As a BN structure diverges more, the ability of it to fit a particular
distribution degrades. The error bars show the minimum and maximum scores
achieved over 100 randomly augmented networks with the same SHD value.

degrades as less people are required to agree in order to form a majority vote or
as the Dawid & Skene prior is increased.

The Learnt networks all exhibit a comparatively low SHD. This is surprising, given
they are not interested in causal relationships, and so have different heuristics to
guide whether an arc should exist or not. Given this fact, it would be expected
that the SHD of the Survey networks would be lower (closer in structure to the
Gold network).

The SHDs of the Other networks are not very interesting. Otherzero will always
have an SHD equal to the number of arcs in the Gold network. The SHD of the
Otherrand arc depends on the algorithm being used to create the random structure.
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Figure 5.12.: SHD of the Eval networks compared to the Gold network (see
Appendix C, p255 for full data).

The fact thatMaj networks with low thresholds, or DS networks with high priors
have such large SHD scores is because they tend to include so many arcs. Although
the SHD score doesn’t distinguish between false positives or false negatives, the
high SHDs tend to be due to false positives rather than false negatives. This is
investigated further in Section 5.3.2.

5.3.2. Scoring Networks Using the ROC and F1 Metric

The Receiver Operating Characteristic (ROC) is a tool with which to compare
various algorithms, and decide which is best. It makes use of similar metrics to
the SHD. The metrics it uses in order to compare algorithms is the True Positive
Rate (TPR, Eq. 5.1) and the False Positive Rate (FPR, Eq. 5.2) framed in terms
of the number of True Positives (TP ), True Negatives (TN), False Positives (FP ),
and False Negatives (FN):
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TPR = TP

TP + FN
(5.1)

FPR = FP

FP + TN
(5.2)

F1 = 2× Precision×Recall
Precision+Recall

= 2× TP
2× TP + FN + FP

(5.3)

A perfect algorithm would have a TPR of 1 (all arcs in the Gold network were
included in the evaluation network) and a FPR of 0 (there are not any arcs in
the evaluation network which are not found in the Gold network)8. In most cases,
it becomes a trade-off between high TPR and low FPR as to which algorithm
is better. In some situations, a higher TPR may be desirable (e.g. in disease
diagnosis - where missing a positive result can cause serious problems). Other
times, it might be preferable to have a lower FPR (if the decisions being taken in
response to the algorithm cost significant money, one may not wish to spend that
money on something which turns out to be a false positive). Often, as an algorithm
approaches a higher TPR, the number of false positives increases asymptotically.

Given that the number of CPT values required for a variable increases exponen-
tially with the number of parents it has in a BN, many algorithms for learning BN
structures optimise for a lower number of parents (e.g. Wallace and Korb (1999)
explicitly favours simpler models). Thus, it makes sense that the ROC metric for
the evaluation network structure should prioritise a lower FPR. Having said this,
it should not be completely at the expense of true positives. In the extreme case,
if there were no true positives, then the network structures would have none of the
same arcs at all.

Figure 5.13 shows the ROC “space” for the Eval and Gold networks. The Gold
network is, as expected, the best, given that by definition it has a TPR of 1 and
a FPR of 0. After this, the Learnttabu network stands out as much closer to the
Gold network. This is primarily because the TRP is better than all other Eval

8This concept of a “perfect” algorithm is not quite right. False positive of 0 and false negative
of 0 is probably indicative of heavily over-fitting the problem, but it is a good thing to strive
for in general.
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Figure 5.13.: The ROC space of arcs. Those closer to the top left are better,
because they are “more correct” (higher TPR) and “less incorrect” (lower FPR).
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Figure 5.14.: F1 score for the Eval networks when compared to theGold network.

networks. Even though there are some networks with a very low FPR, this is due
to the fact that they have so few arcs compared to the Gold network.

In terms of the Survey networks, the DS networks tend to outperform the Maj

networks. Although Maj2,3 are both close to the DS networks, they are outper-
formed by nearly all of them. The remainder are at least as good if not better,
whileMaj4,5,6 have too few arcs to be considered close to Gold by the ROC metric.

Another metric related to the sensitivity and specificity measured by the SHD
is the F1 score (Eq. 5.3). This is a single metric which takes into account both
precision and recall providing a single number which is the harmonic mean between
the two. This is ideal because to get a high F1 score (i.e. near 1) both the
precision and the recall need to be good. As can be seen in Figure 5.14, many
of the Survey BN structures outperform Learntrsmax2, however Learntmmhc and
particularly Learnttabu greatly outperform each Survey structure. It can also be
seen that the best Maj network structure is similar to the best DS structure,
although the Maj scores degrade quickly with higher thresholds.
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Post-hoc Analysis of SHD results Another clear benefit of DS overMaj which
is apparent in Figure 5.13 and Figure 5.14 is that whereas Maj networks reduce
their TPR and F1 scores as the threshold increases, DS networks scale much
less drastically. What this means in practice is that when eliciting BNs in the
absence of a gold standard, a knowledge engineer needs to make a judgment call
about the right threshold for majority vote. If the judgment call is a little bit off
(e.g. 5 instead of 4 in this evaluation) then the quality of the BN could degrade
significantly. However with theDS networks, the penalty for choosing the incorrect
threshold is less severe. This should be investigated in future studies to see if it is
the case with other BNs.

5.3.3. Scoring Networks by Parameterising Then Using the
BIC Metric

Many techniques exist to measure the accuracy with which a given BN models
a particular data set. The log likelihood (LL) metric is used to measure the
probability that a particular data set would be observed, if the given BN did indeed
represent the true probability distribution. The observed data set may have been
collected from experiments, sampled from an already existing BN, or obtained in
some other manner. The main problem with only using the LL is that models which
over-fit the solution are ranked highly. To address this issue, algorithms such as
the Bayesian Information Criterion (BIC), Akaike’s Information Criterion (AIC,
Akaike, 1998), and the Minimum Description Length (MDL, Rissanen, 1978) have
been proposed to balance the desire for accurate measurements with the desire to
have simple models that don’t over-fit the problem (Cruz-Ramírez et al., 2006).
These algorithms penalise models which have larger number of parameters. The
BIC score is used to score the parameterised networks in this section.

The collated network structures from Section 5.2 need to be parameterised before
comparing to the Gold network. In order to do this a data set to use for paramet-
erising the network is required and another (ideally different) data set for scoring
the network. Both of these can be sampled from the Gold BN which formed the
basis for the new network being elicited (Figure 5.15).
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Gold Standard
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Figure 5.15.: Process for scoring elicited network structures when they do not yet
have CPTs. Note that the data used in step 3 for learning CPTs, and that used
for step 7 to score the evaluation network are both different data sets, randomly
sampled from the same gold standard BN.

In order to score the Survey network structures, the bnlearn (Scutari, 2010) pack-
age for the R statistical software (R Core Team, 2014) was used. A synthetic data
set of 1,000,000 items was generated using the rbn function, which samples from
the distribution represented by the Gold network.

The Survey network structures were then input into the package. Using these
network structures and also the synthetic data set from the previous step, the
CPTs were learnt using the bn.fit function of bnlearn. To compare these to the
Gold BN, the bic scoring function from the bnlearn package was used. The Learnt
and Other networks were also scored to put the Survey scores into perspective.

BN Score vs Size of Data Set Used to Calculate Probabilities Before pro-
ceeding to score the Eval networks against the Gold network it is important to
know how many samples should be used to parameterise the networks. Figure 5.16
shows the score that is given to five different car insurance BNs, as they are para-
meterised with an increasingly large number of observations. This analysis was
done by sampling increasingly large data sets from the insurance network, using
the rbn function from bnlearn.

As the number of samples grows larger, it becomes less likely that the specific data
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Gold
Learnttabu

DS0.05

Learntmmhc

Learntrsmax2

Linear scores vs sample size

(a) BIC scores for Gold, Learnt, and DS0.05 networks, after
being parameterised with progressively larger sample sizes
drawn from the Gold network itself.

Non-linear scores vs sample size

(b) BIC scores for the DS0.35 network, showing that
networks with a larger number of arcs tend to follow
a logarithmic rather than linear change in the BIC
score, until there is enough data to model all of the
relationships in the network.

Figure 5.16.: BIC score of various BNs, after being parameterised with progress-
ively larger sample sizes.
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set came from a particular model (the BIC falls). This is due to an increasing
amount of information in the data set, but a uniform number of variables and
states in the BN able to encode that extra information. As a result, it is harder
for a BN to model the nuances of 500,000 data points than it is to model 5,000.

It can also be seen that although most networks BIC scores fall as good as linearly
(Figure 5.16a), the DS0.35 score initially falls logarithmically, until there is enough
data for which to parameterise all of the extra additional arcs (Figure 5.16b).
After that point, it too seems to fall linearly9. When conducting analysis of BN
structures, it is therefore important to ensure that the amount of data being used
to parameterise the structure is great enough to ensure it is in the linear portion
of this graph. Otherwise, the amount of data used will greatly impact the relative
score of a particular structure. For example, when comparing BIC scores for the
Gold , Learntmmhc, and DS0.35 networks, then the relative difference between 25k
to 50k data points will be far greater than 525k to 550k.

Comparing DS, Maj, Learnt, and Other scores Figure 5.17 shows the scores
assigned to theDS andMaj network structures when parameterised with 1,000,000
data points sampled from the Gold BN. For comparison, it also shows the Gold,
Learnt and Other network scores.

It can be seen that the Maj networks exhibit a sudden decline in quality as the
threshold for agreement drops from 3 to 2. If the threshold is reduced, then more
arcs will be included, and it seems that a majority value of 2 was enough to
produce a poor network. However in the other direction, it only slowly degrades
as the threshold is increased from 3 to 6. This degrade in quality will be due to
the fact that there are less arcs, resulting in an inability for the BN to be able to
encode the relevant information.

For the DS networks, as the prior probability of an arc increases (increasing the
chance of any single arc being included in the final structure) then the score wor-
sens. As the prior approaches zero, then the probability of any given arc being

9The DS0.35 network was chosen to highlight this non-linear relationship because it was the
Eval network which showed this most clearly. DS0.30 and lower showed the same pattern,
but less so, to the point where DS0.20 was close to linear.
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Figure 5.17.: Scores calculated for the Gold and Eval networks (see Appendix C,
p253 for full data).

included decreases and the total number of arcs is reduced. As the prior probabil-
ity of any given arc being included approaches 1.0, then almost all arcs fromMaj1

will get included, regardless of how many people rejected it.

Conclusion of BIC score analysis The BIC score of all Eval networks was worse
than both Learntmmhc and Learnttabu. The best Maj network was Maj3, and the
best DS network was DS0.01 which each had the same score, closely followed by
DS0.001 and DS0.05,0.10,0.15 that had similar scores.

Note thatMaj2, andDS0.30,0.35 are so far worse than any other structure, including
Zero andRandom that they are not even worth considering as potential structures.
Given that DS0.25 and Maj4,5,6 are near enough to the Other networks that they
are not useful. They are unable to provide a better model of the car insurance
domain than either random arcs between variables or zero relationships at all.
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5.3.4. Intentionally Degrading Survey Response Data
(Post-Hoc)

The analysis to this point has shown poor results in that the Survey networks are
not ideal and theDS networks are not substantially better than theMaj networks.
One limitation of this evaluation is that there was only one survey conducted due
to time constraints. This post-hoc analysis section will investigate what happens
when responses belonging to an increasingly large proportion of participants are
removed from the survey responses before analysis. This will simulate running the
survey again with less participants. As less participants are included, trends can
be established as to how EM and Majority Vote are able to cope with less data.

Past research in the field of crowd sourcing has made use of different numbers
of responses. Whitehill et al. (2009) acquired three labels for each data point,
whereas Sheng et al. (2008) explicitly investigated the effects of more participants.
Given the results of Sheng et al. (2008) which showed that the improvement in
results diminishes with an increased number of participants, it may be that in this
evaluation study, allocating each question to 6 participants reached a saturation
point. As a result, the EM algorithm might not have had enough of a chance to
differentiate itself from the Majority Vote. Randomly removing participants from
the response pool may provide an insight into what to expect if less experts are
available.

Figure 5.18 and Figure 5.19 show the result of this analysis. The BIC score of
all Eval networks degrade as more participants responses are excluded from the
collation stage. However, the DS structures are affected less and converge on BIC
scores between −1.5×107 and −1.7×107 (Figure 5.19b). Comparatively, theMaj

networks converge on worse scores between−1.8×107 and−1.9×107(Figure 5.19a).
Note that the score which Maj4,5,6 converge on is that of Otherzero as they very
quickly become networks with zero arcs.

5.3.5. Summary of “Good” Networks
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Figure 5.18.: Eval network scores after removing between 0-30 random parti-
cipants before collating structures.
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Figure 5.19.: Cropped view to better show Eval network scores after removing
between 0-30 random participants before collating structures.
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Network SHD F1 BIC Degraded BIC
Maj2 14th 12th 14th 1st

Maj3 4th 1st 5th 11th

Maj4 3rd 2nd 8th 12th

Maj5 1st 13th 9th 13th

Maj6 2nd 14th 10th 14th

DS0.001 5th 6th 3rd 10th

DS0.01 6th 4th 1st 7th

DS0.05 7th 3rd 2nd 8th

DS0.10 8th 9th 6th 9th

DS0.15 9th 5th 4th 6th

DS0.20 10th 7th 7th 4th

DS0.25 11th 8th 11th 5th

DS0.30 12th 10th 12th 3rd

DS0.35 13th 11th 13th 2nd

Table 5.3.: Summary of the evaluation metrics in Section 5.3, comparing Eval
networks to the Gold network. Each Eval network is ranked from 1st to 14th.
Metrics which were considered unacceptable relative to the other networks are
greyed out.

A summary of Section 5.3 is shown in Table 5.3, depicting the various metrics
which were used to score the Eval BN structures. Section 5.3.1 concluded that all
Eval networks had a poor SHD score, however theMaj networks performed better
than DS due to the excessive amount of false positives in DS network structures.
The F1 score of Maj3,4 were better than each of the DS networks, although the
remaining Maj2,5,6 had particularly poor F1 scores. DS0.01,0.05,0.001,0.15 produced
the best BIC scores followed byMaj3. All DS networks were better able to handle
less experts than each of the Maj networks except Maj2.

5.4. Time Spent by Participants Doing Survey

The BNE software measured the duration spent by each participant conducting
the online survey. This was done by analysing logs which indicate when specific
actions were performed such as signing in or answering a question. This is similar
to the approach taken by most web analytics companies in practice. Despite its
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Time spent by participants

7:26 16:11 26:47 38:36 56:46

Figure 5.20.: Analysis of time spent by participants using the survey software,
who completed all questions allocated to them in the first round, shown as
quartiles.

popular usage, measuring time spent on websites using logs is problematic. At
the time of writing, Google Analytics arbitrarily defines a “session” as a time
frame where a sequence of actions were taken with no more than 30 minute breaks
between each action. Thus if somebody was to perform an action then leave for
31 minutes before returning, it would count as two different sessions. However if
that same user only left for 29 minutes, it would count as one continuous session10.
In the future, it may be preferable to modify BNE to use JavaScript to monitor
mouse movements, touches, and key presses on each web page, although this would
not work appropriately for mobile browsers that use touch screens.

Figure 5.20 provide an insight into the approximate amount of time spent by
participants in order to elicit the structure of a BN. The minimum amount of time
spent was less than 10 minutes, the median was under 30 minutes, and the most
amount of time spent was just under 1 hour.

Milton (2008, p50) explain that traditional KE projects typically last between 4
to 24 weeks, can require “a few hours per week ... from each expert” (p25), and
could include “zero, one, two, or many” experts (p50). At the lower end of this
scale, this would involve approximately 8 hours from a single expert over a 4 week
project. In a larger project, it may be closer to 100 hours for a 24 week project
with two experts.

Milton (2008) describe an entire process from conceiving the idea to build a model,
through to completion and usage of the build model. It must be noted that this
evaluation study which output a BN structure was at most 1

3 of an entire project,
given most BN projects will need to elicit variables and CPTs in addition to the

10https://support.google.com/analytics/answer/2731565?hl=en
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structure. However, it still required substantially less time from each participant
who took part compared to usual KA projects.

5.5. Comparing Estimated Quality Measures to
Accuracy

Once the survey was completed and the evaluation BNs constructed, the expertise
of each participant was estimated using a technique described by Ipeirotis et al.
(2010). The real accuracy of the participants was also garnered by comparing their
survey responses to the gold standard network ( T P +T N

T otal questions asked
). Comparing the

estimated and real accuracy verified whether or not SEBN was able to correctly
estimate expertise of different participants (Figure 5.21).

The Dawid & Skene algorithm was used to decide which arcs to include in the
network based on participant responses. Ipeirotis et al. (2010) show how the
EM algorithm can also be used to compute the “quality” of each participant.
The quality refers to how consistent their responses are with the information in
the Gold network. The BNE software calculated the estimated quality using the
software from Ipeirotis et al. (2010). Figure 5.22 shows each participant’s accuracy
compared to the estimated quality for the DS0.05 network structure. It can be
seen that for this evaluation, the estimated quality is not a good indicator of a

Expert
responses Elicited BN

Estimated
expert

accuracies

Collate responses
into BN using
EM algorithm

Gold
standard BN Compare responses

to gold standard

Actual
expert

accuracies

Measure estimated
accuracy against
actual accuracy

Figure 5.21.: Process for evaluating whether SEBN is able to meaningfully discern
the expertise of each participant or not.
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Estimated quality
As calculated by Ipeirotis, et al. (2010)
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Figure 5.22.: The quality of participants responses as per the Ipeirotis et al.
(2010) calculation compared to the actual accuracy measured from Gold vs
DS0.05 network.

participant’s accuracy. The future work in Section 8.7.6 (p217) discusses different
algorithms that could be used to estimate the quality of participants in future
studies.

5.6. Optimising Network Structure for Future CPT
Elicitation

Optimisations which can be performed once the network structure is collated were
discussed in Section 4.6.3 (p97). These optimisations are not related to making
the process of structure elicitation more efficient or effective, but rather to help
with subsequent CPT elicitation.

Although the evaluation survey didn’t result in any optimisation opportunities,
the time required of participants to ask about optimisations is negligible. If there
are no potential optimisations as is the case with the Survey/Gold network, then
there is no additional time required. Therefore, this section will investigate some
hypothetical scenarios from some of the Eval networks by making changes to the
network structure and then analysing how applying specific optimisations would
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have reduced the required time of experts and knowledge engineers alike.

5.6.1. Changes to Eval Networks to Facilitate Evaluation of
Optimisations

The evaluations discussed were the NoisyOR and NoisyMAX. NoisyMAX is po-
tentially suitable for ordinal nodes with multiple ordinal parents and NoisyOR for
boolean nodes which have multiple boolean parents.

Modifying Maj3 for NoisyMAX Optimisations

The nodes which are chosen for modification and subsequent optimisation from the
Maj3 network are those which are ordinal, have a large number of parents, and
most of the parents are ordinal. Nodes with more parents will benefit more from
optimisations, due to the way in which the number of CPT parameters required
increases exponentially with the number of parents.

Maj3 contains four ordinal nodes which have ≥ 5 parents, for which only one is
not ordinal (Figure 5.23). The non-ordinal parents (greyed out in Figure 5.23)
were removed for the purpose of this analysis.

Modifying DS0.10 for NoisyOR optimisations

As with the previous section, there are none which fit into the criteria of being
boolean and having only boolean parents. The boolean node closest to having all
boolean parents is Theft (Figure 5.24). This variable has five parents in DS0.10

of which VehicleYear and AntiTheft are boolean. In addition, DrivHist will be
considered boolean by changing the states in allows from { Zero, One, Many }
to { Zero, Many }. The resulting relationship after removing MakeModel and
HomeBase is { DrivHist, VehicleYear, AntiTheft } → Theft.
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(a) (b)

(c) (d)

Figure 5.23.: Four ordinal variables from Maj3 with ≥ 5 parents of which only
one is not ordinal. The non ordinal parent is shown with a shaded background.

Figure 5.24.: Theft variable from DS0.10 with five parents of which three will be
considered boolean for this analysis. The non boolean parents are shown with
a shaded background.
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Child Node
Number of parameters required for CPT

Regular CPT NoisyMAX Parameter Reduction
(% of original parameters)

OtherCarCost 576 18 3.16%
Accident 2, 592 22 0.84%
ILiCost 864 19 2.20%
DrivHist 432 17 3.94%

Table 5.4.: Reduction in parameters required to parameterise random variables
by using the NoisyMAX distribution.

5.6.2. Parameter Reduction When Applying NoisyMAX
Optimisation

Table 5.4 shows the reduction in CPT parameters requiring eliciting for nodes that
the NoisyMAX optimisation can be applied to. All of the four variables reduce
by at least one order of magnitude, and in the case of Accident, by two orders of
magnitude. It is not feasible to ask experts to elicit over 2,500 probabilities to
parameterise a single node, when there are 10s of nodes requiring parametrisation.
However, eliciting 22 probabilities is much more reasonable.

5.6.3. Parameter Reduction When Applying NoisyOR
Optimisation

When applying the NoisyOR optimisation to the Theft node reduces the required
number of parameters drops from 8 (i.e. 2n, where n is the number of parents) to 3.
This is not as drastic a drop as the NoisyMAX distribution above, although as the
number of parents increases, the NoisyOR distribution becomes more beneficial.
However, increasing the number of parents also increases the chance that one of
them violates the NoisyOR requirements.
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5.7. Limitations and Post-hoc Exploratory Analysis

Given the results in this chapter, it seems that the participants chosen were not
an ideal proxy for domain experts. This section investigates whether there was
still useful information to be gained from having a population of lay people with
experience driving contribute to a BN for car insurance risk assessment. This type
of analysis has its own limitations, as it is likely to fall victim to confirmation bias
(Nickerson, 1998). The goal is not to attempt to formulate any hypothesis based
on the available data after the experiment has been completed (Wagenmakers
et al., 2012), and thus conclusions drawn should not be treated as evidence that
lay people are a suitable substitute for experts in this type of experiment. Rather,
the goal is to perform an exploratory investigation into the results to help guide
future researchers construct appropriate experimental evaluations to determine
more thoroughly if this is a worthwhile direction to take future research.

Specifically, this section investigated the questions which were answered the most
emphatically during the survey. This was used to identify whether such emphat-
ically answered questions may provide insight into how SEBN may be used in the
future. Perhaps there are certain portions of BN structures that could be effect-
ively elicited using this approach, leaving the remaining, more difficult parts to
be elicited using traditional KEBN. Alternatively, perhaps a prototype BN can
be quickly and cheaply developed via SEBN before investing a greater amount of
time and cost on a lengthy traditional KEBN project.

5.7.1. The Cost of Excluding Arcs With Low Strength

Figure 5.25 shows the arcs included in the DS and Maj networks respectively.
Each arc is plotted according to its strength (as calculated in Figure 5.7, p120)
and whether it is a true positive, i.e. whether it is present in the Gold network.
With respect to the DS arcs in Figure 5.25a, if all arcs with a strength of < 0.8
were to be excluded, regardless of whether they are in theGold network (simulating
the experience of not having a gold standard in the first place), then a total of 47
arcs are removed and 93 are retained. Of these 47 removed arcs, only two of them
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(a) If arcs of strength ≤ 0.8 were to be ex-
cluded, then it would reduce the false pos-
itives by a large amount, while only ex-
cluding two true positives. A strength of
1 in this case represents arcs which were
only included despite the DS prior only
being was 0.1%, and a strength of 0 rep-
resents arcs that are included only when
the prior is as high as 35%.

(b) The strength of arcs in the Maj
networks give zero information about
whether the arc should be in the Gold
network or not. A strength of 1 repres-
ents arcs that are only included when 6
participants voted for them, whereas a
strength of 0 represents zero people vot-
ing for an arc.

Figure 5.25.: Each point is an arc in the Eval network, that is either in the gold
standard (true positive) or not (false positive).

are from the gold standard, whereas the remaining 45 are not. This indicates that
the questions which were answered with an overwhelming level of agreement and
subsequently included in the DS network may prove to be a helpful metric for
when no gold standard is present.

The Maj arcs shown in Figure 5.25b tell a subtly different story, although it is
difficult to discern visually. If arcs with a strength of < 0.6 were to be excluded,
the results go from a total of 227 incorrect vs 36 correct to a lowly 18 incorrect
but 13 correct. The ratio of incorrect to correct improves much more than the DS
case, but for a cost of excluding half of the 36 true positive arcs.

Given this post-hoc analysis, when only the responses with particularly high agree-
ment are taken into account, it seems that the lay participants with experience
driving used in this evaluation are able to come up with good quality responses. It
is suggested that future research should perform similar evaluations, perhaps also
with a lay audience, but with some minor changes. Specifically, the researcher
should outline before the experiment whether they value the inclusion of addi-
tional arcs at the expense of more noise in the resulting network, or the exclusion
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of incorrect arcs at the expense of less relationships in the network overall. If
the former, than DS collation should be chosen. If the latter, than Maj empir-
ically performed better during this evaluation. Subsequent evaluations could help
to determine what the cutoff strength is for Maj and DS respectively in order
to exclude poor quality responses and include good quality arcs in the resulting
BN. The following section provides further post-hoc analysis of the arcs with high
strength, in order to see if other patterns can be identified to help with future
research into SEBN.

5.7.2. Investigation of Arcs With High Strength

The main assumption guiding the choice of lay people for use in this evaluation
was that many of the concepts in the car insurance network would be known by
lay people with experience driving, regardless of whether they have worked in the
insurance field. To explore this assumption, the following two sections look at
a selection of true and false positives from the evaluation to investigate whether
the assumption turned out to be reasonable. The evaluation network arcs with a
strength of ≥ 4/6 (Table 5.5) are explored below by reviewing the questions that
were asked in the survey in order to produce the them.

True positives with strong agreement This section highlights two questions
from the true positive arcs with highest agreement in the evaluation (Table 5.4a).

“Does the age of the clients vehicle direct [sic]11 influence any of these?
- Airbags (Whether or not there are any airbags installed in the clients
car)”

This had the highest level of agreement. This is unsurprising, given that air bags
did not exist in vehicles beyond a certain date. Additionally, they have become
more prevalent in new cars as time has progressed.

“Does the quality of clients driving directly influence any of these? -
Accident (Whether or not the client will be involved in an accident)”

11This was an error in the evaluation survey, it should’ve used the word “directly” instead of
“direct”.
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(a) Correct arcs with high agreement.

From To Strength
VehicleYear Airbag 1
DrivQuality Accident 5/6

DrivingSkill DrivHist 5/6

RiskAversion DrivHist 5/6

RiskAversion SeniorTrain 5/6

MakeModel Airbag 4/6

SocioEcon AntiTheft 4/6

Accident ILiCost 4/6

SocioEcon MakeModel 4/6

MakeModel RuggedAuto 4/6

AntiTheft Theft 4/6

HomeBase Theft 4/6

RuggedAuto ThisCarDam 4/6

(b) Incorrect arcs with high agreement.

From To Strength Implied in Gold (indirectly)
DrivingSkill Accident 1 (DrivingSkill → DrivQuality → Accident)

RiskAversion Airbag 5/6 (RiskAversion → MakeModel → Airbag)

MakeModel Theft 5/6 (MakeModel → CarValue → Theft)

Age Accident 4/6
(Age is the top of the DAG, thus it indirectly

influences all variables to some extent)

VehicleYear Accident 4/6 (VehicleYear → Antilock → Accident)

Age Airbag 4/6 (as above)

SocioEcon Airbag 4/6 (SocioEcon → MakeModel → Airbag)

Age MakeModel 4/6 (Age→ SocioEcon → MakeModel)

VehicleYear Theft 4/6 (VehicleYear → CarValue → Theft)

DrivingSkill ThisCarDam 4/6
(DrivingSkill → DrivQuality →

Accident → ThisCarDam)

RiskAversion ThisCarDam 4/6
(RiskAversion → VehicleYear →

RuggedAuto → ThisCarDam)

MakeModel AntiTheft 1 No
VehicleYear AntiTheft 5/6 No
DrivQuality DrivHist 5/6 No
ThisCarCost Age 4/6 No
DrivHist ILiCost 4/6 No
Accident SeniorTrain 4/6 No

DrivingSkill SeniorTrain 4/6 No

Table 5.5.: Arcs with high level of agreement arising from the evaluation study
in Chapter 5.
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It seems reasonable that a driver who is better at driving would also be better able
to avoid accidents than those who are worse at driving.

The level of obviousness exhibited by the two questions above is indicative of all
the other true positives with strong agreement in Table 5.4a. This is not surpris-
ing, given the post-hoc nature of the analysis undertaken. Naturally questions
which were selected because they happened to be answered correctly will seem ob-
vious. Nevertheless, it helps to contrast these with the false positives with strong
agreement shown in the following section.

False positives with strong agreement This section highlights the false posit-
ives from the survey which have high agreement (Table 5.4b). Some of the false
positives can be forgiven because they do represent causal relationships as seen in
the gold standard, only with other mediating variables between them. This section
will only analyse the false positives from Table 5.4b which are not represented as
direct or indirect causal relationships in the Gold network. Each will fall into one
of three error categories to better understand whether the incorrect responses are
due to the choice of lay participants or other reasons:

Type A Question was worded correctly, but the answer is incorrect (evidence that
lay people with experience driving are not a good supplement for insurance
experts)

Type B Question was answered incorrectly, but perhaps the gold standard was
actually incorrect (evidence that the choice of gold standard was poor)

Type C Question should have been relatively obvious, but were poorly worded
(mistake on behalf of the researcher)

The false positives with the highest agreement were:

“Does the type of the clients car directly influence any of these? - Anti
theft device installed”

Perhaps a Type B error, as an argument could be made that sports cars or luxury
cars would be more likely to have anti theft devices installed than family cars, due
to their increased cost.
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“Does the age of the clients vehicle directly influence any of these? -
Anti theft device installed”

If anti theft devices have become more common in newer generation cars, then
this is a Type B error. Alternatively, an insurance expert may be able to produce
evidence that the prevalence of such devices has stayed constant over time. In that
case, this would be a Type A error.

“Does the quality of clients driving directly influence any of these? -
Driver history (If the client has a history of insurance claims)”

This seems like a reasonable causal relationship, and such could be classified as a
Type B error. The reason it was not encoded in the Gold network was likely be-
cause the Binder et al. (1997) article is investigating latent variables which results
in a relationship from DrivQuality ← DrivingSkill → DrivHist, where Driving-
Skill is the latent variable that explains the relationship between DrivQuality and
DrivHist. As such there is indeed a relationship between DrivQuality and DrivHist
in the Gold network, just not a causal relationship.

“Does the cost to the insurer to fix clients car directly influence any of
these? - Age of the client”

This is perhaps the most confusing response given by survey participants as it has
resulted in responses that violate causality. It is clear that the cost of fixing a
car does not influence anyone’s age. The wording of the question does not seem
particularly ambiguous either, indicating that this is a Type A error.

“Does the clients driving skill directly influence any of these? - Ad-
vanced driver training (Whether the client has undergone additional
training after obtaining their license. Some companies may refer to
this as “Skilled Driving” or “Defensive Driving” courses)”

This question seems to have been interpreted in an inverse manner. It seems likely
that advanced driver training would influence a drivers skill, but not the reverse.
As such, this is a Type A error.

“Does the clients driving history directly influence any of these? - Cost
to insurer for liability/property (The total cost to the insurer for 3rd
party property damage, due to an accident caused by the client)”
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This appears to be a Type C error, due to the confusion between the persons past
history of insurance claims with previous insurers, and a potential future claim
with a new insurer. If this was articulated more clearly, then perhaps it would not
have caused confusion. Alternatively it is possible that participants though that
past incidents are indicative of future incidents, which may make this a Type B
error.

“If the client becomes involved in an accident, will it directly influ-
ence any of these? - Advanced driver training (Whether the client has
undergone additional training after obtaining their license. Some com-
panies may refer to this as “Skilled Driving” or “Defensive Driving”
courses)”

This is likely a mix of Type A and C error. It is Type C because there are
ambiguities in the wording whereby the chance of an accident is a potential future
event, whereas the advanced driver training is something the client has already
undertaken before signing up for insurance. If this was misinterpreted as the
chance that a driver will undertake advanced training in the future, then it becomes
a Type A error. This is due to the knowledge an expert would have about whether
insurers encourage people to undertake driver training in response to having an
accident or not.

Given the post-hoc analysis above, it seems that indeed there was some Type A
errors which would not be present had a cohort of insurance experts been enlisted
for the evaluation survey. However there are also many other errors which are
potentially not related to the choice of participants. These Type B and C errors
are down to other factors that could be addressed with future research into SEBN.

5.7.3. Summary of Post-hoc Analysis

This post-hoc analysis has shown that many of the false positive arcs with high
agreement were valuable inclusions in the resulting BN structure. In particular,
they tended to indeed be causal relationships that are worthy of consideration.
The problem arises when there is mediating variables that would better encode
the causal relationship. As such, it is suggested that future research focus on the
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indirect vs direct anomalies explained in Section 4.6.2 (p95) to make sure that
such relationships in the evaluation are able to be identified.

Additionally, at the culmination of any future evaluations, arcs with a high level
of agreement should be selected for inclusion in the resulting network. Given the
post-hoc empirical observations outlined above, aDS prior of between 5% and 10%
was a good choice, but this would require further experimentation before deciding
on a usable prior. Arcs with a lower strength should then be further investigated
in a traditional KEBN session with experts. This allows for at least part of the
BN to be elicited at a lower cost and a simpler manner using SEBN, reducing
the burden on experts when it does come time to perform traditional KEBN to
complete the model.

5.8. Chapter Summary

This chapter documented the evaluation of SEBN which took place using the BNE
software to elicit the structure of a BN for car insurance risk assessment. The goal
was to conduct an online survey and collate the responses into a BN structure, then
compare to a known gold standard and measure how close the elicited structure
was. Section 5.2 outlined the different network structures that were created in
order to evaluate the effectiveness of EM vs Majority Vote collation.

A good result would have been where the elicited structures were close to the
original BN in terms of SHD, F1 scores, and BIC scores. The process also should
have taken less time of each participant compared to if they were asked to partake
in one or more face to face interviews.

The results from Section 5.3 show that the SHD, F1, and BIC compared unfa-
vourably to the benchmark network. Section 5.3.5 summarised the results of each
scoring metric, and showed that Majority Vote produced the individual networks
with the best scores. However the EM algorithm is more predictable, in that a
lower prior almost always produces better results. Although the Majority Vote also
trends towards better scores with an increased threshold, there is a point at which
it quickly deteriorates. This point may not be apparent in the absence of a gold
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standard. The EM algorithm was more robust during the post-hoc analysis which
artificially reduced the number of responses available for collation (Section 5.3.4).
This indicates it may be better able to deal with a lower number of participants.
Further research is warranted to investigate whether the predictability of EM vs
the sensitivity of Majority Vote is exhibited when other BN structures are elicited
using SEBN. Also, the artificial reduction in the number of responses should be
investigated by eliciting the same network multiple times with a different number
of experts.

As for the time spent by participants when eliciting the structure, the semi-
structured nature of traditional interviews makes it hard to compare to SEBN,
given the scope of this thesis. Nevertheless, Section 5.4 showed that the median
amount of time spent by participants using BNE was under 30 minutes and the
most was below 1 hour, which is less than many knowledge elicitation sessions.
This is an improvement even when taking into consideration structure elicitation
accounts for perhaps 1

4 of the entire BN elicitation. Future research should con-
duct both SEBN and traditional KEBN for the same BN for even more comparable
metrics.

The following chapter elaborates on SEBN, by extending to facilitate the elicitation
CPTs in addition to BN structures.
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6. Calculating BN Probabilities
Through Survey Based Elicitation

This chapter introduces the second part of SEBN, used to elicit the CPTs of a BN
structure via expert elicitation using online surveys. More specifically, it adopts
ideas from past research including Das (2004); van der Gaag et al. (1999) and
Saaty (1990), discussed in the literature review in Section 2.2.5 (p36) and shows
how such approaches can be used for eliciting probabilities for BNs in an efficient
manner. Any system for reducing the magnitude of the CPT elicitation task by
utilising online surveys will likely have to incorporate many of the techniques from
Section 2.2.5, choosing the most appropriate one for each CPT requiring elicitation.

Many of the ideas in this chapter are similar to those presented in Chapter 4
when discussing the elicitation of BN structures via SEBN. Where relevant, the
discussion here will delegate to the previous writing to reduce repetition.

6.1. Overview

This section shows a very general overview of the process, to be elaborated on
in subsequent sections as each step is explained in detail. The broad overview is
shown in Figure 6.1. The reader can skip forward to Figure 6.10 (p164) to view
the final process in its entirety.

Generate Questions Section 6.2 discusses how the various questions will be gen-
erated. It will show how the questions will differ based on the local structure of
any given variable. For example, nodes with zero parents result in a different set
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Figure 6.1.: Simplified flowchart showing the process for eliciting probabilities
with surveys. It does not show anything particularly revolutionary, but will be
expanded on in greater detail throughout this chapter.

of questions to those with a single parent, which are different from those with
multiple parents.

Allocate Questions The allocation of questions to experts (Section 6.3) is very
similar to Section 4.4 (p85), which discusses reducing the burden on experts by
only asking a subset of questions. It is different in this chapter in that the specific
types of questions to be allocated will differ, and the total number of questions
may not be known.

Collate Answers Section 6.4 shows two methods in which probabilities can be
collated together from multiple experts in order to produce an authoritative set
of CPTs for the final BN. The first approach shown is to take the average of all
estimations for a given probability and then normalize. The second is to make
use of the EM algorithm to take into account the differences in how each expert
answers the questions allocated to them.

6.2. Generate Questions

The method prescribed in this chapter considers three distinct types of BN node,
and formulates different sets of questions based on this. The first two cases (zero or
one parent variables) focus their efforts on reducing the cognitive load of probabil-
ity elicitation, rather than reducing the number of probabilities to be elicited. The
third makes use of the weighted sum algorithm (Das, 2004) discussed in the liter-
ature review in Section 2.2.5 (p36) to ask about only a subset of all probabilities,
then infer the remaining probabilities.
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The simplest case is when a node has no parents, in which case the expert is
required to answer one question for each state of that variable, about its marginal
probability. In the case where there is a single parent, the expert is asked to elicit
a conditional probability for each of the variables states, conditioned on each state
the parent can take. Finally, when a node has multiple parents, experts are first
asked for “Compatible Parent Configurations” (CPC) as described by Das (2004),
then the conditional probability of each child variable state, conditioned on the
CPCs, followed by questions to ascertain which parent has the greatest influence
on the child variable. This information is then processed according to the weighted
sum algorithm to fill in the remainder of the CPT.

A Word on the Use of Flow Chart Syntax Wherever possible, this thesis at-
tempts to make use of standardised syntax for flowcharts (ISO 5807:1985). The
only exception is in this chapter, where nested loops are used heavily. The usual
way to encode a loop in a flowchart is a branch statement which checks for loop
termination, and returns to the beginning if the loop is to continue. This can
quickly become unwieldy and hard to interpret when nested loops are involved.
This chapter uses a non-standard syntax that represents loops as plates containing
flowchart elements, which can be nested (e.g. Figure 6.3 shows two nested plates:
“For each variable”, and “For each state”). It is hoped that this is a more concise
syntax which makes it easier to interpret and understand the diagrams.

6.2.1. Questions Required for Variables With no Parents

The simplest situation is when a particular variable has no parents. In this case, the
questions needn’t be concerned with conditional probabilities at all. Additionally,
the number of questions required depends only on the number of states present in
the variable. This is distinct from conditional probabilities, where the number of
parameters grows exponentially with the number of parents. This section will use
the BN node shown in Figure 6.2 as an example to illustrate how the questions
are generated. Figure 6.3 illustrates the process involved in generating questions
here.
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Client Age

Adolescent
Adult
Senior

Figure 6.2.: Single variable with no parents, including the three possible states
the variable can take.

Figure 6.3.: Elicit the marginal probability of every state for each variable.

The questions to elicit the marginal probability of each state of the variables are
formulated in the following way:

What is the likelihood of the following scenario?

State

Where State is an English phrase manually provided by the knowledge engineer,
describing the state of the variable with whatever context is required to make it
coherent and understandable by experts. There may be an urge to combine the
variable name and the state name programatically, but this is discouraged. Hope
et al. (2002) propose the following format (for nodes with multiple parents):

158



6.2 Generate Questions

“Consider that Parent1 is State1 and that Parent2 is State5 . What
is the chance that Child is State3 ?” (Hope et al., 2002, p7)

However, this will result in mechanical sounding and jarring phrases. For example,
consider the variable Client Age and one of its states Young adult, where the State
is manually entered as “Client is a young adult” by the knowledge engineer:

• How likely is the following scenario: Client Age is Young Adult?

• How likely is the following scenario: Client is a young adult?

While the former is constructed in a similar fashion to Hope et al. (2002), the latter
“Client is a young adult” is preferable, even though the variable name Client Age
isn’t present in the sentence. Appendix F (p269) presents a more comprehensive
set of examples for generating questions of this and every other type.

The response to questions of the form “How likely is the following scenario: State?”
should be a probability value between zero and one. In order to ease the cognit-
ive burden of eliciting these probability values, the question should be asked by
presenting the scale proposed by van der Gaag et al. (1999) and advocated by
Korb and Nicholson (2011, p327). The scale in Figure 6.4 shows the seven differ-
ent options which are shown to experts, and an English label of what each item
on the scale represents.

Figure 6.4.: “The Fragment of Text and Probability Scale for the Assessment of
the Conditional Probability” adapted from van der Gaag et al. (1999).

The BNE software uses the van der Gaag et al. (1999) scale, and augments it by
providing contextual help which utilises relative frequency elicitations (Price, 1998)
rather than probability elicitations (Figure 6.5). Price (1998) showed probabilities
elicited from questions framed using relatively frequencies “tended to be lower,
exhibit less scatter, and express complete certainty less often than judgments in
response to the probability elicitation question”.
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Figure 6.5.: User interface of BNE showing a question for the Client Age variable,
which has zero parents in the insurance network. Whenever a button is hovered
over, the tool tip is exposed to clarify the meaning of the words from the van der
Gaag et al. (1999) scale.

6.2.2. Questions Required for Variables With a Single Parent

This section will use the example child node Liability Cost and its single parent
node Accident (Figure 6.6). All conditional probabilities for the child node are
elicited using the same scale depicted in Section 6.2.1. The only difference is that
the probability being elicited is a conditional probability, conditioned on each of
the states of the parent variable. Figure 6.7 augments the flowchart to include the
single parent case.

The first part of the resulting questions are similar to those from the case where
the node has no parents (Section 6.2.1). This is followed by a description of the
parent state which the child state is being conditioned on:

What is the likelihood of the following scenario?

ChildState

If we know that:

ParentState

Figure 6.8 shows how the questions look in the BNE software, incorporating the
states of the parent variable. Appendix F (p269) provides further examples of
questions generated in this fashion for the insurance network.
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Accident

None
Mild

Moderate
Severe

Liability Cost

< $1k
$1k - $10k

$10k - $100k
>= $100k

Figure 6.6.: Child variable with a single parent. The states the variable can take
are shown also.

Figure 6.7.: Elicit the marginal probability of every state for each variable.
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Figure 6.8.: Screenshot of BNE when asking about the Liability Cost variable,
which has a single parent of Accident.

6.2.3. Questions Required for Variables With Multiple Parents

Figure 6.10 elaborates on the flowchart to include the process for eliciting CPTs
of variables with multiple parents. Whereas the previous sections documented the
elicitation of an entire CPT, this section proposes questions that directly elicit
only a subset of probabilities for each CPT. The weighted sum algorithm is then
used to fill in remaining CPT entries. The end result is that a reduced number of
questions need to be asked from the experts, compared to if they were to populate
the entire CPT. This involves three distinct phases, to be discussed below:

• Eliciting compatible parent configurations (CPCs).

• Eliciting conditional probabilities.

• Eliciting relative weights of each parent.

Throughout this section, the child node Car Value and its three parents Mileage,
Vehicle Year, and Car Type, will be used as the example (Figure 6.9).

Compatible Parent Configurations (CPC) The first thing to do when there
are multiple parents is to elicit the relevant CPCs. The process is explained in
Algorithm 6.1, whereby each parent variable is iterated over, and for each state of
that variable, the most likely state of all other parents is elicited.
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Car Value

< $1k
$1k - $10k

$10k - $100k
> $100k

Mileage

< 10k
10k - 40k

40k - 100k
> 100k

Vehicle Year

Older model
Current model

Car Type

Economy
Family
Sports
Luxury

Figure 6.9.: Single variable with multiple parents. The states that each parent
and the child variable can take are shown also.

Algorithm 6.1 Eliciting compatible parent configurations for a particular child
variable.
1: P← Parent nodes
2: Q← ∅ . Questions
3:
4: for all P as px do
5: for all States(px) as sxi do
6: Pothers ← P \ {px}
7: Q ← Q ∪ { "When px is in state sxi, what states would you expect

Pothers to be in?"}
8: end for
9: end for

Figure 6.11 shows the questions to be asked in order to elicit the CPCs for the
parents of the Car Value variable (Figure 6.9). Once the expert has selected the
two most compatible parent states for the Vehicle Year and Car Type variables,
then questions are repeated, for the next state of the mileage variable:

“If Client’s car has driven between 10,000 and 40,000kms, then I ex-
pect...”

This is repeated until all of the states of the Mileage parent have been exhausted.
Then, the same process is conducted for the Vehicle Year variable, whereby the
most compatible states of Car Type and Mileage are elicited. Finally, the same is
done for the Car Type parent, resulting in one CPC for each state of each parent.
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Figure 6.10.: The process after adding the elicitation procedure for variables with
multiple parents. The flowchart for multiple parents includes questions for both
the weighted sum algorithm and also the AHP algorithm.

164



6.2 Generate Questions

Figure 6.11.: Eliciting the CPC from the three parents of Car Value shown in
Figure 6.9: Mileage, Vehicle Year and Car Type.

Conditional Probability Once CPCs have been elicited for each parent state, the
conditional probability of each child state, conditioned on the CPCs needs to be
elicited. These questions are posed the same way as for the single parent case,
using the van der Gaag et al. (1999) scale (Figure 6.4, p159). The difference is
that instead of conditioning on each of the states of the single parent variable, each
child state is conditioned on each of the CPCs elicited from the previous questions.

For example, if

CPC (Mileage =< 10k) =

{Mileage =< 10k, V ehicleAge = current,MakeModel = family sedan}

Then there will be four questions of the format shown in Figure 6.12, one for each
of:

• Pr (Car V alue < $1, 000|CPC (Mileage < 10k))

• Pr (Car V alue < $10, 000|CPC (Mileage < 10k))

• Pr (Car V alue < $100, 000|CPC (Mileage < 10k))
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Figure 6.12.: Question to elicit the Pr(Car V alue < $1, 000|
Mileage < 10k, V ehicleAge = current,MakeModel = family sedan), where
the three parent states represent the CPC when Mileage = <10k.

• Pr (Car V alue ≥ $100, 000|CPC (Mileage < 10k))

Relative Weight of Each Parent After eliciting conditional probabilities, the
final step in the weighted sum algorithm is to elicit weightings for each parent
variable. That is, which variable has the largest influence on the state of the child
variable. The original algorithm asks for a weight for each parent directly from
experts, such that they all sum to 1 (Das, 2004, p10). However, other researchers
have successfully made use of pairwise comparisons as a more intuitive way to elicit
relative weightings between multiple choices (e.g. Chin et al., 2009). Thus, SEBN
makes use of the Analytic Hierarchy Process (AHP, Saaty (1990)) to elicit these
weightings in a manner more fitting of a survey. That is, instead of explicitly asking
the experts for numeric weights, it asks them to perform pairwise comparisons of
each parent and then use the results of those comparisons to calculate weightings.

A pairwise comparison of each parent is shown to the participant, and they state
whether one of them is more influential, or they are equally influential (Fig-
ure 6.13).

Once the expert has mentioned which variable they deem to be the most influen-
tial, then they are asked how much more influential that parent is. This is done
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Figure 6.13.: Questions required for a pairwise comparison between Vehicle Age
andMileage. The responses are used as input into the AHP process to determine
relative weightings between all parent variables of Car Value.

Figure 6.14.: The scale used to elicit the relative difference in influence that two
different parents have on a child variable. The numbers adapted from Saaty
(1990, p112) and the labels from Monti and Carenini (2000, p503).

by presenting them with options from 2 times more influential to 9 times more in-
fluential. The numbers were derived from the AHP process documented in Saaty
(1990, p112). To make them more understandable, the labels used in SEBN for
values between 2-9 are from Monti and Carenini (2000, p503).

Note on Increased Number of Questions Due to Using AHP

SEBN is about reducing the burden on experts. Chapter 4 addresses this almost
exclusively by reducing the number of questions each participant needs to answer.
This chapter, and specifically the choice to adopt AHP in place of directly eliciting
relative weights, is different. The goal here is to reduce the cognitive burden by
decomposing the problem of eliciting weights into more manageable questions in
a more natural format. In fact, the number of questions is increased somewhat
significantly when moving from “Assign relative weights to each parent to indicate
the relative strength of influence on the child node” to “pairwise comparisons
of each of the parent variables”. The original approach needs only n questions,
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whereas the AHP requires between n2−n
2 and n2 − n questions. It is anticipated

that, given most BN structures try to minimise the number of parent nodes in
BNs, this increase in questions only becomes a problem at higher values of n. This
is not much of a problem in the context of BNs, as it is often advocated to keep the
value of n low for any given node to prevent combinatorial explosion (Neil et al.,
2000, p16).

6.3. Allocating a Subset of Questions to Each
Survey Participant

As with the structure elicitation in Chapter 4, only a subset of questions are alloc-
ated to each participant. This section will highlight the similarities and differences
from the earlier discussion in Section 4.4 (p85).

6.3.1. What is Allocated

Section 6.2 discussed the specific questions which are generated for variables with
zero, one or many parents. Variables with many parents produce more questions,
and the specific questions for eliciting conditional probabilities may vary, depend-
ing on earlier responses to the questions eliciting CPCs. Given motivation for
introducing CPCs is so that experts can reason in a coherent frame of thought
(Das, 2004), it would be disadvantageous to take the CPCs from one expert and
use them to ask about conditional probabilities from a different expert. Thus,
individual variables should be allocated to experts, and then each participant is
asked to answer all the relevant questions for variables allocated to them, accord-
ing to the rules outlined in Section 6.2. For example, if an expert is allocated
the Age variable which has zero parents, they will be asked multiple questions
in order to elicit the marginal probability of that variable. Alternatively, if they
were allocated the CarValue variable with its three parents, then they will need to
first elicit the CPCs, then the conditional probabilities for each child state given
each CPC, and finally the AHP questions in order to produce weightings for each
parent.
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6.3 Allocating a Subset of Questions

The smallest block of questions that are required in order to elicit a full CPT for
a given variable is defined by:

nvar =


svar pvar = 0

svar × sp pvar = 1[
CPC + CP + AHP

2 , CPC + CP + AHP
]

pvar > 1

(6.1)

Where:

• nvar is the number of questions required to parameterise the CPT for variable
var

• pvar is the number of parents for variable var

• svar is the number of states the child variable can take

• sp is the number of states of a single parent

• CPC = svar × CP

• CP =
pvar∑
i=1

spi

• spi is the number of states parent i can take

• AHP = p2
var − pvar

Note that in the pvar > 1 case, the number of questions is a range. This is due to
the situation in which an expert responds to a pairwise comparison by saying that
they are equally influential. In such a case, there is no need to ask a subsequent
question about how much more influential either parent is. In the pathological
case, only half the maximum number of AHP related questions would be asked if
all parents were to be judged as equally influential.

6.3.2. Question Allocation Strategies

The way in which different variables can be allocated to various experts is dis-
cussed in detail in Section 4.4 (p85). The same strategies apply to CPT elicitation
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in SEBN, whereby experts could be allocated variables based on the class the
variables belong to, facilitating specialist experts to provide answers to targeted
questions. As with the structure elicitation, the BNE software elects to allocate
the least allocated questions to each expert as they sign up for the survey.

6.3.3. How Many Allocated Questions is Enough?

Outlined in Section 4.4.3 (p87) is four variables used when calculating the expected
number of allocations for a given expert. These are:

1. How many questions are there to be answered in total (ntot)?

2. How often should like each question be answered by an expert (a)?

3. How many experts are available (ne)?

4. How many questions are allocated to each expert (nq)?

These are equally relevant when allocating variables for CPT elicitation, as are
the resulting equations Eq. 4.1, Eq. 4.2, and Eq. 4.3 (p88). As discussed in Sec-
tion 6.3.1, the smallest block of questions which should be allocated to a particular
expert is defined by nvar in Eq. 6.1 (p169). Thus, ntot =

m∑
i=1

nvar,i where m is the

number of variables in the BN, and nvar,i is the value of nvar for variable i.

Other than these differences, the steps for deciding how many questions to allocate
to each expert is the same as in Section 4.4.3 (p87). That is, the knowledge engineer
needs to take into considerations information such as:

• Is the number of experts known before the survey begins?

• How much time is likely required to answer questions?

• What is the maximum amount of time that each expert is expected to afford?

Answering these questions will allow Eq. 4.1, Eq. 4.2 and Eq. 4.3 (p88) to be solved
and the number of allocations to be decided.
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6.4. Collating Answers

The data which will be collated into CPTs will be the various full CPTs elicited
by experts, after the weighted sum algorithm has been applied to the raw survey
responses. This is because different experts will potentially have been asked dif-
ferent questions depending on how they responded. Specifically, it is likely that
different experts may elicit different CPCs, which in turn results in different con-
ditional probabilities being requested. Thus, it is not possible to combine different
participants raw responses together before processing into CPTs.

Mean The mean is perhaps the simplest mechanism for taking estimations from
multiple experts for the same conditional probability and combining them into
one conditional probability value. In order to do so, each expert who answered
questions resulting in a particular CPT will have their values for each probability
summed. This is then normalised so that the CPT only contains probabilities that
sum to 1, for each combination of parent states.

Expectation Maximization Algorithm A more advanced mechanism for taking
multiple estimations of the same value and combining them is the EM algorithm.
This was discussed in Section 4.5 (p90) with respect to structure elicitation. As
with the mean discussed above, the resulting probabilities will require normaliza-
tion after applying the EM algorithm.

6.5. Trade-offs

This section will document the various trade-offs which have been identified in the
processes of refining and documenting the system for using SEBN to elicit CPTs.
The goal is to allow knowledge engineers to make the most informed decision when
implementing this technique for BN elicitation, with full knowledge of the possible
trade-offs which need to be considered.
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6.5.1. Preventing Duplicate Questions When Duplicate CPCs
Arise

It is quite likely experts will end up with some duplicate CPCs for differing parent
states. In such cases, the conditional probability of the child state given that CPC
need only be elicited once. For example, it may be the case that:

CPC (Mileage < 10k) = CPC (V ehicleAge = current) =

{Mileage < 10k, V ehicleAge = current,MakeModel = family sedan}

In the above case, it would not be strictly necessary to elicit both of:

Pr (Car V alue < $1, 000|CPC (Mileage < 10k))

Pr (Car V alue < $1, 000|CPC (V ehicleAge = current))

as they will both represent the same CPT in the weighted sum algorithm. Imple-
menters of SEBN may choose to intentionally ask more than once, as a way to
check how consistently experts respond to the question. Monti and Carenini (2000,
p507) investigated inconsistencies in expert elicited probabilities. They found that
forcing the expert to confront such inconsistencies didn’t seem to have any spe-
cific benefits, given their expert would usually choose the midpoint between two
inconsistent estimates. The BNE software opted to only ask for the conditional
probability once.

6.5.2. Randomising question order

When presenting a series of questions to an expert, they can be either randomised
or presented in order by iterating over all variables and their states. If the questions
are presented in order, then people will have time to comprehend the questions
better, and build a proper mental model of what it is asking. In their work
on crowd sourcing, Organisciak et al. (2012) found that people who had time
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to familiarise themselves with the task at hand performed better at answering
questions. However in the case of the probability elicitation questions in this
chapter, two questions can look the same at first glance when in fact they are asking
about two different conditional probabilities. Section F.2 (p270) shows several
examples of questions which were generated during the evaluation in Chapter 7,
highlighting the way in which some questions can appear similar. If the order is
randomised, then each subsequent question should be sufficiently different from
the previous such as to cause the expert to read it in full. The BNE software does
not randomise the order of the questions

6.6. Chapter Summary

This chapter documented the series of steps required in order to use online surveys
to elicit the CPTs of a BN. This chapter complements Chapter 4 (p73) which
focussed on eliciting the structure of a BN. Put together, these two chapters form
SEBN, prescribing a comprehensive system for using online surveys to elicit BNs.
The following chapter documents the experimental evaluation to investigate the
propositions documented in Section 3.3 (p60) and discuss whether SEBN is a
suitable approach to use to elicit CPTs BNs.
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7. Evaluating Probability Elicitation

The aspect of SEBN focussed on eliciting CPTs (described in Chapter 6) is evalu-
ated in this chapter. The evaluation took the shape of an online survey using the
BN Elicitator (BNE) software (Serwylo, 2013). In the language of Venable et al.
(2012) it was primarily a naturalistic, ex post evaluation, as it was conducted in
the same manner that a live survey to elicit the CPTs for a BN would be. The
main difference is the choice of participants, discussed in Section 7.1.2.

This chapter will be organised as follows: Section 7.1 describes the method of
evaluation. After describing the experimental setup, it analyses the participants
who took part in the online survey. Results of the survey are discussed in Sec-
tion 7.2 focusing on the CPTs elicited during the survey and how they compare
to those in the gold standard network. Section 7.3 verifies how coherent the re-
sponses provided by the participants are, and Section 7.4 shows the amount of time
spent by each participant while completing the survey. Following this, Section 7.5
investigates the assumptions made by Das (2004) when proposing the weighted
sum algorithm. The assumptions are tested empirically by comparing the probab-
ilities calculated using the algorithm with the corresponding probabilities which
were explicitly elicited from participants. Finally, a summary of the evaluation is
presented in Section 7.6.

7.1. Experimental Method Used for Evaluation

This section documents the experiment which took place in order to address the
propositions laid out in Section 3.3 (p60). The experiment took the form of an
online survey about car insurance. Section 7.1.1 describes the method in more
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Figure 7.1.: A broad overview of the process used to evaluate the elicitation of
CPTs via SEBN.

detail, followed by a summary of the participants who took part in Section 7.1.2.
The results of the experimental survey will be presented later in the chapter.

7.1.1. Overview of Experimental Method

The goal with this evaluation was to elicit the CPTs for a BN structure using
SEBN (described in Chapter 6, p155). These elicited CPTs could then be com-
pared to a known gold standard network to see how closely the elicited probability
distributions match. Figure 7.1 shows a high level overview of the experiment
which was undertaken.

The BN structure which was parameterised during this evaluation was that of the
car insurance network (Binder et al., 1997) discussed in more detail in Section 5.1
(p104). Although the evaluation could have used the structure resulting form the
previous evaluation of structure elicitation (Chapter 5), this would not have been
an appropriate gold standard. It did not contain any CPTs at all, and thus the
CPTs elicited during this evaluation would not be able to be compared to anything
to verify if they were accurate or not. By using the original car insurance network,
direct comparisons could be made between the elicited CPTs and the gold standard
CPTs.

The online survey was conducted using the BNE software. It was extended from
the software used in Chapter 5 to support the CPT part of SEBN described in
Chapter 6.

The CPT elicitation evaluation took place over a period of approximately two
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weeks in 2013. All participants were recruited in this time window, no recruiting
was done prior to the survey starting.

7.1.2. Recruiting Participants for Survey

The recruitment of participants for this evaluation was similar to that of the pre-
vious evaluation for structure elicitation (Chapter 5). The choice of participants
was discussed in Section 5.1.4 (p106) and how many questions to allocate each
participant was discussed in Section 6.3.3, (p170).

This evaluation used a different set of participants from the previous. As with
the structure evaluation, this evaluation left the number of participants (ne) as
variable in the hope that as many people as possible could sign up. The number
of questions asked of each participant (nq) was fixed.

Section 6.3.1 (p168) outlined how the number of parents for a given variable dic-
tates the types of questions which need to be asked to elicit the CPT for that
variable. The BNE software was configured to allocate groups of questions to each
participant, such that answering each of the questions in a group would result in
the CPT for a given variable. Participants were allocated multiple groups until
nq exceeded 60. Based on an earlier ex ante evaluation while developing the BNE
software, it was estimated this would require approximately 15 - 30 minutes to
complete.

Figure 7.2 shows that of the 64 participants who created an account for the BNE
software, 56 consented to participate in the survey. Of these, 50 completed at
least one group of variables resulting in a CPT, while 44 completed all allocated
questions including a short demographic survey at the end. Participants who
completed the entire survey were given the choice of entering the draw for a single
$100 cash prize. All 56 consenting participants opted to go into the draw for the
prize.

The spread of responses across variables is shown in Figure 7.3. This shows the
number of participants who responded sufficiently to produce a full CPT for each
variable. The lowest number of CPTs elicited for a particular variable was the
SocioEcon variable which had CPTs elicited from three different participants. The
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Figure 7.2.: Visualising the participation dropout as the survey progressed.

highest number of elicited CPTs was seven for the Accident, DrivinkSkill, and
MakeModel variables, each with 7 CPTs. The spread is similar to that in the
structure elicitation survey (Figure 5.3, p110).

Participant Demographics As was discussed in Section 5.1.3 (p105), the car
insurance network (Binder et al., 1997) was chosen as the gold standard in part
because the concepts depicted in it should be familiar to most people who drive

Figure 7.3.: Number of participants who completed questions about each CPT.
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cars. To get an insight into the participants used in this evaluation, and whether
they could reasonably be expected to be familiar with driving a car, the BNE
software was configured to ask participants about their driving habits at the con-
clusion of the elicitation survey. The results (shown in Figure 7.4) indicate that a
large proportion of respondents were familiar with driving cars, many of them hav-
ing held a drivers license for over 5 years. Also, the vast majority will likely have
experience with similar driving conditions to each other due to living in Victoria,
Australia.
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Figure 7.4.: Results of the demographic survey. Numbers in parenthesis are the
proportion of participants who answered the question.
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Label Description

Gold
“Gold Standard”

Existing network from literature (Binder et al., 1997).

Mean
“Mean”

Average all CPTs for a node, then normalize.

DS
“Dawid & Skene”

Collate using EM algorithm (Dawid and Skene, 1979; Project Troia, 2013)
then normalize.

Survey {Mean, DS}

LearntBayes
Learnt from the bnlearn software, via the bn.fit

function with bayes and mle

LearntMLE
algorithms respectively. Uses data sampled

from the Gold network.
Learnt {LearntBayes, LearntMLE}
Eval Survey ∪ Learnt

Table 7.1.: The different algorithms used to produce CPTs for evaluation.

7.2. Comparing CPTs of Individual Variables

This chapter will produce a number of different CPTs in order to compare those
to the gold standard car insurance network (Binder et al., 1997), and others learnt
using the bnlearn software (Scutari, 2010).

7.2.1. Collating Survey Responses into CPTs

Before analysing results from the online survey they must first be collated into a
single CPT for each node in the gold standard BN structure. This section describes
how the responses from multiple participants were collated to form the requisite
CPTs.

Overview of the Different CPTs Being Evaluated Table 7.1 shows the different
ways in which CPTs were elicited from the survey. It also shows others which were
learnt from existing algorithms solely for the purpose of evaluating this research.
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Mean and DS algorithms both start with full CPTs output from the BNE sur-
vey software (as opposed to raw, unprocessed survey responses), after applying
the weighted sum algorithm where relevant. Thus, for each variable in the BN
there is multiple CPTs for which to combine. The Mean network collates CPTs
by averaging the value for each conditional probability across participants, then
normalizing the CPT. The DS CPTs are collated using the EM algorithm from
the Troia software package (Project Troia, 2013) and then normalized.

The Learnt CPTs were created using existing algorithms provided by the bnlearn
software (Scutari, 2010). A training data set was sampled from the Gold network
(n = 1000) and then input to the bn.fit function using bayes and mle algorithms
to produce the CPTs. Note that these algorithms were unable to deal with variable
states that were highly unlikely or impossible. The states in the Gold network with
a probability of 0.0 such as Pr(OtherCarCost = Million|Accident = None) were
never represented in the training data set and those with probabilities approaching
0.0 such as Pr(Theft = True|HomeBase = Secure) were very unlikely to be
represented in the data. While it is possible to increase the number of sampled
records in order to ensure that unlikely states are observed, this is undesirable.
Firstly, improvements from the increase in training data diminish as the size of
the data set increases. Secondly, there will always be some states which are never
observed due to their probability being 0.0 and so the problem will still persist
no matter how many records are sampled for the training data. The way in
which bayes and mle algorithms from the bnlearn software handle unobserved
states differs. The bayes algorithm sets the CPT for the unobserved states to the
uniform distribution. The mle algorithm sets them to NaN values. This chapter
will highlight when this impacts on the analysis.

Selecting CPTs to Evaluate A subset of all variables from the Gold BN have
their CPTs evaluated in this chapter. The variables which are evaluated are
shown in Table 7.2. The variables which were excluded are: SocioEcon, Other-
Car, GoodStudent, RiskAversion, AntiTheft, HomeBase, VehicleYear, MakeModel,
RuggedAuto, Antilock, Airbag, Theft, ThisCarCost, MedCost, and Cushioning.
Appendix D (p257) provides a more comprehensive discussion on the choice of
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Variable Number of Parents
Age 0

Mileage 0
ILiCost 1

DrivingSkill 2
PropCost 2
SeniorTrain 2
DrivQuality 2
DrivHist 2

ThisCarDam 2
OtherCarCost 2

Accident 3
Table 7.2.: The variables which are evaluated in this chapter.

which CPTs were evaluated, and which were left out (and why).

7.2.2. Summary of Probabilities

Figure 7.5 shows conditional probabilities from the Gold network and compares
them to the same conditional probabilities from the Survey and LearntBayes net-
works. The probabilities from the LearntBayes CPTs show a very strong positive
correlation with those from the Gold network (r = 0.93, Figure 7.5a). The Survey
networks contain much more uniform probability distributions compared to those
in the Gold network. However, they are both still positively correlated (r = 0.54,
Figure 7.5c and Figure 7.5d). Note the outliers at LearntBayes = 0.25 (both when
Gold = 0.0 and Gold = 1.0) which are due to the training data used to learn
LearntBayes not containing any observed values of these states.

The CPTs fromMean and DS are quite different to those from Gold despite being
positively correlated. This can be seen by analysing the RMSE of the Eval CPTs
compared to those from the Gold network (Figure 7.6). There is a substantially
larger error in the Survey and DS CPTs than those of the Learnt networks due to
the uniformness of the probabilities in the Survey CPTs observed in Figure 7.5c.
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the equivalent probabilities for the Mean, DS, and LearntBayes networks re-
spectively.
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Figure 7.6.: Root Mean Squared Error of the conditional probabilities in Mean,
DS, LearntMLE, and LearntBayes when measured against the probabilities in
Gold.

7.3. Verifying Coherency Among Responses

While building a system to elicit CPTs from experts, Hope et al. (2002) discussed
the concept of coherency. The sum of each elicited probability conditioned on the
same sample space must sum to one in order to adhere to one of the basic axioms
of probability theory. The greater the distance from one, the less coherent each
individual probability is likely to be. The future work section from Hope et al.
(2002) discussed how it would be useful to explore other mechanisms to normalize
values while maintaining coherency. This research agrees that it would be helpful,
and thus this section provides an analysis of how coherent responses tended to be
in order to provide data for future researchers to work with.

Each point in Figure 7.7 shows the sum of an elicited probability values for the
different states of a variable, elicited by individual participants. For variables in the
BN with only a single parent, each point refers to, e.g. ∑

x∈states(ILiCost) Pr(ILiCost =
x|Accident = True). For variable with no parents, each point refers to the sum
of all probabilities for each state of that variable, e.g. ∑

x∈states(Age) Pr(Age = x).
They should sum to 1 to be completely coherent.

The end result shown in Figure 7.7 is a large bias towards overstating the probab-
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Figure 7.7.: Each point represents the sum of an individual participants elicited
probability values for different states of a variable, conditioned on specific states
of its parents.

ility of events. Almost all probabilities summed to > 1, with only a small number
summing to 1 and an equally small amount understating the probability of an
event (µ = 1.40, σ2 = 0.55). This shows that participants were not very coherent
when responding to survey questions, or that the survey questions were crafted in
such a way as to allow incoherent answers.

7.4. Time Spent by Participants Doing Survey

The analysis of time spent by participants during the survey was done by looking
at the web server access logs, grouping users based on their IP address. The way
in which the time of each session was calculated is discussed in Section 5.4 (p138).
Although it is possible that multiple participants accessed the survey through the
same IP address due to being behind a NAT router, this was not the case in this
study. This is known because there was 44 different users who were deemed by
the application code to have completed the survey. In corroboration with this, the
web server logs show 45 unique IP addresses visiting the URL that corresponds
to completing the survey1. This page could only be visited by logged in users
who had completed the survey. Thus, it is concluded that for all participants who

1The discrepancy between 45 IP addresses and 44 users finishing the survey is likely due to an
error occurring on one of these page visits, preventing the application from logging the users
completion of the survey.
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Time spent by participants
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Figure 7.8.: Time spent by unique IP addresses participating in the online survey
(though not necessarily finishing). Note that this is lower than the actual time
spent by participants, due to the reasons discussed in Section 7.4.

completed the survey, they did not share an IP address.

In total, the web server logs had 69 unique IP addresses, 57 of which logged 10
or more page views in the application. Of these 57 unique IPs, 45 logged a page
view for the URL indicating they completed the survey. This means that there is
about 12 IP addresses which either belong to existing participants returning for
another session, or participants who started but didn’t complete the survey. Thus,
the times shown in Figure 7.8 will be shorter than they should be, because some of
those 12 sessions belong to the 45 other people. To cater for this, the median time
of 19 minutes 13 seconds is taken from the sum time spent by all 57 IP addresses,
but divided by 45 (the participants who actually completed). This may be slightly
higher than the real median, because the 12 unaccounted IP addresses may well
belong to participants who started but didn’t complete the survey.

CPT elicitation is frequently referred to as the most time consuming aspect of
BN elicitation (Druzdzel and van der Gaag, 2000). The results here show that
the amount of time required of each participant in order to parameterise this
particular BN via SEBN is minimal. Even after taking into account the maximum
time of almost an hour, the inflated median of 19 minutes is still a small amount
of time compared to traditional KEBN CPT elicitation sessions using face to face
interviews.

7.5. Verifying Accuracy of Das Estimations

The weighted sum algorithm is based on the assumption that:
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Figure 7.9.: Correlation between explicitly elicited conditional probabilities and
their respective estimated value from the weighted sum algorithm (Das, 2004).

Pr(Y = y|X1 = x1, ..., Xn = xn) ≈
n∑

i=1
(wi × Pr (Y = y|CPC(Xi = xi)))

In the original paper (Das, 2004) the assumption behind the algorithm is justified
using heuristics, information theory, and other arguments based on intuition. This
section empirically evaluates this assumption with data from the evaluation survey.

For each variable with > 1 parent, the BNE software elicits responses rprob∪ rCP C∪
rAHP . Each rprob response entails an explicit elicitation of a conditional probability.
This can then be compared to the estimation of the probability by providing rprob∪
rCP C ∪ rAHP as input to the weighted sum algorithm. The results are shown in
Figure 7.9. The analysis shows that there is a weak positive correlation between the
elicited probabilities and those estimated using the weighed sum algorithm. Given
the weak correlation coefficient of 0.43 and the RMSE of 0.20, further investigation
is warranted to decide whether the weighted sum algorithm does in fact provide
an appropriate way to estimate CPT values from sparse elicitations.
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Chapter 7 Evaluating Probability Elicitation

7.6. Chapter Summary

This chapter documented an online survey which was conducted to elicit the CPTs
of a BN using SEBN described in Chapter 6 (p155). It collated responses from
multiple participants to see how close the elicited CPTs were to that of a gold
standard BN. The collation was done using both the mean, and the Dawid &
Skene algorithm, to evaluate how each algorithm performed.

A successful evaluation would result in the CPTs collated from the online survey
being similar to those from the gold standard (as measured by RMSE). Addition-
ally, it should take less time of each participant compared to if the probabilities
were elicited in one or more face to face interviews ala traditional KEBN.

The results from Section 7.2.2 shows that the CPTs elicited from the online survey
do not compare favourably to the gold standard. They are also outperformed
substantially by CPTs from the bnlearn software. Despite this, it is encouraging
that the CPTs are positively correlated with those from the gold standard. The
main difference from the gold network is that the CPTs elicited from the online
survey tend to be more uniform.

In the process of conducting this evaluation, Section 7.5 took the opportunity
to empirically evaluate the assumptions behind the weighted sum algorithm. It
found that there was a very weak positive correlation between the explicitly eli-
cited probabilities, and what the weighted sum assumptions predicted would be
a suitable probability. This shows that further research is required in order to
identify the situations in which the weighted sum assumptions are relevant, and
when the algorithm can be used in order to reduce the magnitude of the CPT
elicitation task.

The median time spent responding to the survey was approximately 20 minutes
with a maximum time of about 60 minutes. Taken together with the previous
evaluation for structure elicitation which showed between 30 and 60 minutes, the
total time expected of each participant to participate in an online survey such as
that conducted for these evaluations is approximately 1 to 2 hours. Eliciting the
structure and the probabilities of a BN are two of the three required tasks, the
other of which is eliciting variables to include in the model. Thus, although this
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does not include all aspects of eliciting an entire BN, 1 to 2 hours is a significant
contribution towards that goal.
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8. Conclusions and Future Work

This thesis proposed and evaluated a method for eliciting BNs from experts using
online surveys in place of interviews. The conclusions of the research are discussed
in this chapter.

8.1. Thesis Summary

This thesis was motivated by a comparative lack of research in the area of know-
ledge elicitation, compared to machine learning methods for constructing BNs
(Section 1.1, p3). The goal was to utilise online surveys to reach a larger and more
diverse pool of experts to contribute their knowledge to the elicitation process. On-
line surveys were chosen because they could be conducted at the experts leisure,
and the responses can be collated together with little effort from the researchers.
This method of BN elicitation was termed SEBN, as opposed to traditional KEBN
(Korb and Nicholson, 2011, p297). It was evaluated using two studies, whereby a
BN was elicited using an implementation of the online survey system. The result-
ing BNs were compared to a gold standard network, to see how similar they were
and how long was required of each participant to conduct the online surveys.

Literature Review The literature review in Chapter 2 provided background on
why BNs are desirable models, and the ways they are currently constructed. This
was followed by an in depth look at both surveys and traditional KA. In particular,
it discussed the various biases that tend to be exhibited when eliciting knowledge
through interviews, or when collecting data via surveys. In the interests of en-
suring the minimal amount of effort was required to combine survey responses
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from multiple experts, the literature review also looked into various ways in which
knowledge from multiple people can be combined. This included the process of
combining knowledge from multiple experts participating in focus groups, and
the field of crowd sourcing, which combines multiple responses from lay people.
This is important for combining survey responses about BN elicitation into one
authoritative BN.

Methodology The Design Science Research (DSR) method was used to frame
the research conducted for this project, and was detailed in Chapter 3. There were
two main artifacts to arise from this research. The first is a method for eliciting
BNs using online surveys in place of interviews (SEBN). The second is an open
source implementation of this method (BNE). Before designing and implementing
the system, a set of propositions was outlined which detailed the expectations of
such a system. Among other things, these propositions stated that the method
should:

• Reduce the burden on experts and researchers alike.

• Output a useful BN at the end of the process.

Building BN Structure Through Survey Based Elicitation The method for
eliciting the structure of BNs using online surveys was presented in Chapter 4.
The method revolves around converting all of the possible relationships between
different variables into causal questions of the form “Does X influence Y ?”. This
results in n2 questions (where n is the number of variables to include in the BN),
which is too many to satisfy the stated goals of reducing the burden on experts.
To address this, variables are first categorised into classes in the manner described
by Kjærulff and Madsen (2013). This ensures that, for example, problems are
able to cause symptoms but symptoms are never the causes of problems. The
second way in which the burden on experts was reduced was by only allocating
a subset of all possible questions to each expert. This drastically reduces the ef-
fort required of each expert, however it means that individuals are not exposed
to the entire problem space. This may result in anomalous relationships appear-
ing in the BN structure once collated, which is undesirable. To counteract this,
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Chapter 4 discusses how to deal with anticipated problems that may arise due to
this phenomena. The most problematic of these is the presence of cycles, which
prevent a valid BN structure from being formed. Algorithms for removing cycles
are discussed in Chapter 4, and also elaborated on in the Future Work section of
this chapter (Section 8.7.8, p218).

Calculating BN Probabilities Through Survey Based Elicitation The elicit-
ation of CPTs via online surveys was documented in Chapter 6 (p155). CPT
elicitation is particular sensitive to combinatorial explosion and usually requires a
large number of probability estimates to be elicited (van der Gaag et al., 1999).
This chapter addressed the problem in three phases, nodes with zero parents, one
parent, and multiple parents. For nodes with zero or one parent, each of the re-
quired probabilities is elicited explicitly using a question of the form “What is the
likelihood of the following scenario?” or “What is the likelihood of the following
scenario, if we know that ...?” respectively. The individual probabilities are eli-
cited using “The Fragment of Text and Probability Scale for the Assessment of
Conditional Probability” adapted from van der Gaag et al. (1999). Nodes with
multiple parents are treated differently, as the number of required probabilities
required to populate a CPT grows exponentially with the number of parents a
node has. Thus, Chapter 6 presents a method for eliciting only partial CPTs using
online surveys, and then interpolating the remaining values as per Das (2004) and
Saaty (1977). As with Chapter 4, the CPT elicitation only allocates a subset of all
questions to any given expert participating in a survey to reduce the time required
of them.

Evaluating Structure Elicitation and Evaluating Probability Elicitation After
Chapter 4 and Chapter 6 proposed SEBN as a technique for using online surveys
to elicit BNs, Chapter 5 and Chapter 7 discuss the experimental evaluations which
took place. The goal of these chapters was to collect data in order to answer the
propositions detailed in Chapter 3 to see if they came to fruition or not. The
evaluations started with an existing BN from the published literature, referred to
as the gold standard network. Then, two online surveys were constructed using
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the BNE software. The first was to elicit the structure of a BN and the second
was to elicit CPTs.

The structure elicitation survey enlisted 43 participants, of which 23 completed
the questions allocated to them. The evaluation then collated these responses into
BN structures using both the majority vote, and the EM algorithm. These two
algorithms were compared to see which was better able to collate responses in
such a way that they corresponded more closely to the gold standard network.
For reference, they were also compared to three existing algorithms for learning
BNs from data, and two nonsense BNs to provide a lower bound on what is con-
sidered acceptable. The CPT elicitation survey enlisted 64 participants, of which
44 answered all of the questions allocated to them. Similar to the evaluation of
the elicited BN structures, the elicited conditional probabilities were collated using
both the mean, and the EM algorithm.

Unfortunately, the results showed that the BN structure and CPTs elicited using
the survey technique were not comparable to either the gold standard, or the ex-
isting algorithms for learning BNs from data. Section 8.7 provides some directions
for future research which should improve the survey method, such that it is able
to compete with other elicitation techniques and provide an alternative that puts
less burden on researchers and experts alike.

The positive out of the evaluation was that although the resulting BN did not
compare favourably to the gold standard, SEBN was indeed able to facilitate the
elicitation of a BN structure and its associated CPTs. It conducted the surveys
in less time than would have been required for traditional KEBN. As such, future
work may improve on SEBN with the confidence that if the elicitation of BN
structures and CPTs becomes more robust, then it will be a viable alternative to
traditional KEBN capable of reducing the burden on experts, and thus facilitating
the elicitation of knowledge from a broader range of stakeholders.
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8.2. Revisiting the Propositions Post Evaluation

This section will evaluate the specific propositions described in Section 3.3 (p60).
The aim is to use the results of the evaluation studies described in Chapter 4 and
Chapter 6 to evaluate if the relevant propositions held true.

8.2.1. Measuring Time Commitments (Proposition 1 & 2)

Proposition 1 and Proposition 2 state that SEBN will require less time of experts
and researchers alike. This evaluation seeks to ascertain whether a BN elicitation
project using SEBN can reasonably be expected to take less time than a traditional
KEBN elicitation project.

Time of Experts

There were two main evaluation surveys undertaken for this project. Prior to
these, an earlier structure elicitation evaluation based on an earlier iteration of
SEBN was abandoned due to the amount of time required of experts who were
contributing. Those experts found that there was too many comments required,
and that they were not willing to spend the requisite amount of time committing to
the project. In response to this, the method outlined in Chapter 4 and Chapter 6
emphasizes allocating only a subset of questions, resulting in less time required of
participants.

During the evaluation survey in Chapter 5, the median time spent by participants
answering questions for the BN structure elicitation survey was less than 30mins,
and the maximum time spent was less than an hour. The CPT evaluation survey
in Chapter 7 resulted in a median time spent of under 20mins, with a maximum
of just under an hour.

In addition to reducing the time requirement of experts by only allocating a subset
of questions, they did not need to travel in order to come to an interview. This
could also be the case for traditional KEBN interviews conducted at the experts
place of work, but it is not the case for other types of interviews.
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Preparation Recruiting Administration Transcription Analysis
Surveys        ##  ##  ##

Interviews   #   #          
Table 8.1.: Summary of researchers time expected to be spent on traditional
KEBN and SEBN.

Time of Researchers

This section addresses how long was spent by the researchers while setting up,
administering, and analysing results from SEBN elicitations. It seeks to identify
and focus on points at which significant input is required by the researcher, and
highlight those where less time is required. The summary of these findings are
presented in Table 8.1.

Recruiting This needs to be done both for traditional and for survey based ap-
proaches. For this evaluation, participants were recruited by talking to col-
leagues in person, and also by contacting extended friends via an online
social network (Facebook). For the CPT elicitation evaluation, advertise-
ments were shown on Facebook for the duration of the survey encouraging
people to sign up and participate1. In terms of time spent, it was comparable
to recruiting experts for a study using traditional KEBN.

Variable Elicitation Variables were identified based on their presence in a gold
standard BN. Thus, the process of variable elicitation was effectively skipped.
This would not be the case with a typical SEBN project. Given that Chapter 4
did not define how variable elicitation should be accomplished for SEBN, it is
likely that it would be conducted in the same way as a traditional approach.
However, during interviews variable elicitation is done at the same time as
the rest of the process whereas a survey approach would likely require an
additional survey. This is because all variables need to be available before
the structure elicitation survey can begin. Thus, the variable elicitation will
likely take longer for SEBN compared to traditional KEBN. The potential

1The Facebook ads were targeted towards those living in Australia, older than 18, who speak
English and have an interest in one of the following: Automobiles, Insurance, SurveyMonkey,
NASCAR, Education, Driving, Vehicle insurance, Teacher, Survey data collection or Motor
sport.
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for adding support for variable elicitation to SEBN to further reduce the
burden is discussed in Section 8.7.4 (p216).

Configuring Software For this evaluation, time was spent setting up the list of
variables and their descriptions. This allowed the system to subsequently
generate questions as per Section 4.2, p75 and Section 6.2, p156. This time
can be seen as similar to the time used preparing semi-structured interviews
or focus groups before actually conducting them. The future work (Sec-
tion 8.7.11, p220) discusses how this could be made easier with more refined
software, or via a hosted online service similar to SurveyMonkey, LimeSur-
vey, or other more traditional providers of traditional surveys. This would
reduce the amount of configuration required by the researcher. It also would
remove the requirement to setup a web server, install the software, make
it publicly accessible to the internet, etc. It would not remove the need to
configure the software with the variables of interest, or customize things such
as the consent form, etc.

Administering Survey/Conducting Interview The total time spent administer-
ing the survey was negligible for the survey. Once recruiting is completed,
then the administration time consists of the time spent compiling email re-
minders to participants who had not completed the survey. A comparative
interview in traditional KEBN would be longer, and demand the constant
attention of the researcher over the period of time the interview is being
conducted.

Analysing Results There was close to zero time required to analyse the survey
results. To move from administering the survey to collecting responses and
producing a BN, it was a matter of pressing a button in the BNE software
(and waiting a few minutes for it to complete). The comparable time spent in
traditional KEBN would be much longer, although much of it would likely
have happened during the interview rather than afterwards. Despite the
different point in time at which the BN is constructed, the time required for
survey elicitation is much shorter than traditional KEBN.

Was Proposition 1 & Proposition 2 Met?
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Yes - Although the reduction in time commitments is greater for ex-
perts than it is for the researcher.

8.2.2. Geographically Dispersed Participants (Proposition 3)

Proposition 3 states SEBN should be more suitable for geographically dispersed
experts. The experimental evaluation conducted here made use of an online survey
discussed in Section 5.1 (p104). It consisted primarily of people from Melbourne,
Victoria, Australia. Having said this, there is nothing about the online survey
or the administrative process for selecting participants which restricted the origin
of the participants. Indeed, over 10% of the participants in the CPT elicitation
survey identified as living interstate (Qld, NSW, and SA) and three overseas, and
this did not impact their ability to participate.

One concern that may arise when using participants from diverse timezones is that
they will find it difficult to commit at the same point in time. This was not an issue
during the evaluation of SEBN, because data collected in a highly asynchronous
manner. The two evaluation surveys were online for a period approximately one
month and two weeks respectively, with participants free to contribute at their
leisure.

If, for administrative or other reasons, the survey needed to be completed in a mat-
ter of hours or days, then geographically disperse participants are not suitable if
the difference in time zones is substantial. Indeed, one of the reasons for proposing
this research was so that experts did not need to congregate at the same time (and
place) in order to participate. It then follows that requiring people to get together
at approximately the same time is not one of the goals of the survey software, and
thus perhaps traditional elicitation is more appropriate (though it would require
some form of video/voice conferencing to deal with the geographically dispersed
participants).

Was Proposition 3 met?

Yes - as long as the survey does not need to be completed in less than
a single day.
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8.2.3. Distinguish Level of Expertise (Proposition 4)

Proposition 4 (p63) talks about the ability of SEBN to better distinguish between
differing levels of expertise in participants. Section 5.5 (p140) investigated and con-
cluded that the Ipeirotis et al. (2010) algorithm was not able to distinguish high
performing experts from those who answered less in line with the gold standard.
The Future Work chapter of this thesis discusses the potential for incorporating
other, more recent crowd sourcing algorithms to collate survey responses (Sec-
tion 8.7.6, p217). Some of these may be better able to estimate the accuracy of
experts.

Was Proposition 4 Met?

No - The survey method was not able to distinguish better or worse
performing experts.

8.2.4. Traditional Method More Flexible (Proposition 5)

The evaluation was not able to empirically measure this due to the evaluation only
conducting an online survey and not a traditional elicitation process (opting to use
a gold standard instead). Nevertheless, it is worth noting that during evaluation,
the survey questions were intentionally kept the same after beginning, in order to
not interfere with the process. This in itself hints at the fact that SEBN is not as
flexible as a structured interview type approach.

In order to collate responses from many different experts over a period of a month,
the responses given by different experts needed to be to the same question. Oth-
erwise, it would be difficult to know if different responses were due to individual
experts having different opinions, or due to a change in the question being asked
of each expert. This came at the expense of some minor confusion during the
evaluation. When one participant explained that they didn’t understand one of
the questions, it was too late to change the wording of it as others had already
answered that question in its current form. In a traditional KEBN setting, the
question could’ve been rephrased. This would not only clarify for the expert who is
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having difficulties, but also potentially for experts in the future who may struggle
with the same question.

Was Proposition 5 Met?

Yes - The survey method does not encourage changing questions mid-
way through an elicitation, whereas traditional KEBN does.

8.2.5. Traditional Method When Less Experts (Proposition 6)

There are a few ways to approach measuring if this is the case. The first is to
see how long each expert takes to contribute to SEBN, and then model how much
longer would be required if there were less experts participating. The second is to
perform traditional KEBN with a single expert, and then add more experts and
repeat, in order to model how much longer would be required if more experts are
participating. This evaluation looked at the first approach.

Measuring the time spent by experts was discussed earlier in Section 8.2.1. The
number of questions allocated to each expert is covered in both Section 4.4 (p85)
and Section 6.3 (p168).

Figure 8.1 shows the exponential increase in estimated time required of each expert
as the total number of experts decreases. These values are modelled based on
structure and CPT SEBN evaluations conducted during this thesis. For both
structure and CPT elicitation, the estimated time required increases quickly as
the number of experts drops below five. Above that, the median expected time is
approximately 2h for each survey, totalling 4h for the elicitation of the structure
and CPTs of a BN. For a BN with 25 nodes such as the one evaluated in this
thesis, anything less than about five participants increases the time required well
beyond 2hrs per expert.

In addition to measuring the time burden of each expert as in Figure 8.1, the
evaluation also looked at artificially removing experts from the response pool in
(Section 5.3.4, p136). The resulting networks collated from a smaller number of
survey responses were indeed of much less quality than those collated from more
responses, although the ML algorithm helped mitigate this somewhat.
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(a) Estimated time required of each expert for structure elicitation survey.
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(b) Estimated time required of each expert for CPT elicitation survey.

Figure 8.1.: Exponential increase in estimated time required of each expert, when
less experts are enlisted to elicit the structure of a BN.
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Was Proposition 6 Met?

Yes - The survey method has an exponential increase in time required
of each expert as the total number of available experts decrease. Also,
the quality of the elicited networks degrade as less expert responses are
collated.

8.2.6. Not Identical, but Similar Structure and Score
(Proposition 7, 8 & 9)

The evaluations in Chapter 5 and Chapter 7 measured quantitatively how well
the BN structures and CPTs elicited via SEBN compared to the original Gold
standard.

As shown quite comprehensively in Section 5.3 (p122), the structure of the elicited
BN structures were not at all similar to the Gold network. It was poor both in
terms of the SHD as well as the ROC and F1 metric, and the BIC score of the
Survey networks was poor, being outscored by all three Learnt network structures.
In addition, Section 7.2.2 (p182) discussed how the CPTs elicited were inferior to
those from the Learnt networks.

It is hoped that by addressing the issues raised in the Future Work section of this
thesis (Section 8.7), SEBN can be refined until it can be used to elicit BNs that are
better able to model the desired probability distribution. In addition, the method
at its current state of research and development may still be found useful as a tool
for constructing prototype BNs for low cost, as part of larger elicitation projects.

Was Proposition 7, 8 & 9 Met?

No - The evaluation did not establish sufficient evidence that online
survey elicitation can produce network structures that are similar, or
result in a similar probability distribution, as the Gold standard net-
work.
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8.3. Addressing the Research Questions and Goals

The introduction chapter outlined the following research question in Section 1.2
(p5):

How can the process of eliciting knowledge for construction of Bayesian
Networks be improved by making use of online surveys instead of face-
to-face interviews?

This was composed of the following two sub-questions:

1. As more experts are consulted, how can the total time and effort involved in
KA for BNs be reduced?

2. As more expert opinions are gathered, how can they be collated into a single
BN model without significantly increasing the workload to resolve differences?

These questions revolved around the ability of SEBN to reduce burden and increase
diversity of the stakeholders. However, even if they were all thoroughly successful,
they are not of much use unless the method is able to produce usable BNs. As
such, this section will also address the failure of SEBN to produce useful BNs
during evaluation.

This section will take a bottom-up approach and first address the two sub-questions,
culminating in a more general discussion about the primary research question. It
will then discuss how the propositions (outlined in Section 3.3, p60, and revisited
above were unable to result in useful BNs).

8.3.1. Addressing the Sub-Questions

The first question was:

1. As more experts are consulted, how can the total time and effort
involved in KA for BNs be reduced?

This was answered in great detail in Chapter 4 and Chapter 6. Specifically, Sec-
tion 4.3 (p80) discussed how variables can be classified using the method of Kjærulff
and Madsen (2013) to exclude questions from the entire survey. This ensures that
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some clearly non-causal relationships are never presented to the experts. The
number of questions required for CPT elicitation was addressed in Section 6.2.3
(p162) by using the weighted sum Das (2004) and AHP Saaty (1977) algorithms.
Section 4.4 (p85) and Section 6.3 (p168) discuss allocating experts a subset of all
questions, allowing them to contribute a small part of the bigger solution, rather
than an entire BN by themselves. This is a different approach than previous eli-
citation techniques (e.g. Flores et al., 2011; Xiao-xuan et al., 2007), and several
issues had to be addressed to ensure that the final BN model is not negatively
impacted by each expert only being exposed to a subset of the entire solution
space. Section 4.6 talked in depth about how to address issues which may arise
due to each expert working on a small portion of the model, specifically cycles in
the resulting BN structure, and also potentially indirect relationships. The result
of all this is that the total time and effort of the knowledge engineer and experts
alike was kept reasonable during SEBN.

2. As more expert opinions are gathered, how can they be collated into a
single BN model without significantly increasing the workload to resolve
differences?

Given the motivation of including a higher number of experts in the elicitation
process, it is important to keep their workload down when trying to incorporate
their many opinions into a final model. Traditional KEBN typically places the
burden on the interviewer or researchers to figure out how to combine the varying
opinions of participants. Section 4.5 (p90) and Section 6.4 (p171) showed how
algorithms from the field of crowd sourcing can be incorporated into the survey
process. This allows for automating the process of combining multiple opinions,
while taking into account the varying capacity for each participant to answer.

The ML algorithm, inspired by earlier work done by Dawid and Skene (1979), was
evaluated thoroughly in Chapter 5, comparing it to the more naive and more regu-
larly employed majority vote algorithm. Unfortunately neither performed particu-
larly well, which indicates that SEBN itself is in need of refinement. Section 8.7.6
discusses the prospect of incorporating more complex algorithms than ML to col-
late answers in an even better manner. This could build upon a recent proliferation
of research into the field of crowd sourcing spurring on more research into these
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algorithms.

8.3.2. Addressing the Main Research Question

The main research question asks about improving the knowledge elicitation process
for BNs by utilising surveys. As can be seen when addressing the sub questions
above, the usage of SEBN in preference to traditional KEBN allowed a large num-
ber of experts to participate. This occurred without a corresponding increase in the
amount of commitment required from experts when answering, or the researchers
when constructing the resulting BN.

Despite the best efforts of this project, the evaluation in Chapter 5 and Chapter 7
has shown that SEBN at its current state of evolution was unable to produce BNs
which compared favourably to the gold standard network chosen for evaluation.
On reflection, this is likely partially due to the choice of participants who were
not recruited from the car insurance industry, but rather were lay people with
experience driving. The reasons behind this decision are discussed in great detail
in Section 5.1.4 (p106), but it seems to have not been a suitable choice given the
outcome of the evaluation. Also, as with any software implementation, it would
be beneficial to have more opportunities to refine the software and perform more
user testing. This thesis did perform two preliminary ex-ante surveys before the
ex-post evaluation surveys discussed in Chapter 5 and Chapter 7. Each of these
provided information that was subsequently incorporated into SEBN and also the
BNE software. The experience of running the experimental evaluation also resulted
in yet-more lessons, which should be incorporated into the software in the future
to ensure experts are able to contribute successfully (see Section 8.7.11, p220).

However, the method did successfully address many of the propositions from Sec-
tion 3.3 (p60), showing that it does indeed reduce the burden on experts, and
facilitate a greater number of people to participate in the elicitation process. It is
hoped that with further research into using online surveys in place of interviews,
the quality of BNs that are output from SEBN will increase. Outlined in Sec-
tion 8.7 (p214) are suggestions for future research and development which may be
able to push SEBN in the direction of a suitable alternative for traditional KEBN.
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It is strongly believed that if the method can be enhanced in the future, to the
point where all of the propositions outlined in this thesis are met, then it will be a
big step forward in BN construction, allowing a large number of people, organisa-
tions, businesses, to be able to make use of BNs when they previously would not
have been able to.

8.4. Reflections on Methodology

While conducting the research for this thesis, it became apparent that there was a
gap between the process of designing SEBN, implementing it in software, and then
using it in an evaluation study. Lukyanenko et al. (2014) argue that IS researchers
producing designs for artifacts should make explicit any concerns pertaining to
moving from design to implementation, which they discuss using the framework
of Instantiation Validity (IV). This is similar to researchers considering construct,
content, predictive, reliability, inter-rater, and other forms of validity. The con-
cerns raised by Lukyanenko et al. (2014) are that very few IS research articles
discuss how to assert that a particular software implementation of a design or
theory is a truthful representation of that design or theory. In other words, how
do researchers ensure that the software they implement for a particular design has
all of the benefits that the design claims to possess?

The conclusion from the Lukyanenko et al. (2014) paper is that:

“Unless sound criteria for evaluating instantiation validity of IS design
research is applied, doubts remain whether results are due to extraneous
factors or attributable to idiosyncratic software development”.

To address this, Chandra et al. (2015) suggested that researchers ensure any
designs resulting from DSR projects have both materiality and action oriented
design principles. Materiality oriented design principles focus heavily on how one
would go about implementing a particular design. The action oriented principles
focus on how a design may impact a humans life when used. IS research should
present a healthy balance between both materiality and action oriented design
principles.
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Arazy et al. (2010) and Lukyanenko and Parsons (2013) also discuss the level of
implementation detail to be bundled with any theory arising from a DSR project.
In the absence of detailed implementation specifications, DSR researchers are un-
able to make any strong claims about IV. For this reason, SEBN in this thesis was
presented in a prescriptive manner (Chapter 4 and 6).

8.4.1. Existing Threats to Instantiation Validity

Lukyanenko et al. (2015) discuss these five threats to IV and strategies to mitigate
them. Each threat relates to a problem that arises when implementing an abstract
theoretical concept as a tangible piece of software.

Threats Solved With More Resources

This thesis argues argues that three of the five specific threats identified by Lukyan-
enko et al. (2015) relate closely to the amount of resources that can be committed
to implementing a particular design.

Artifact Cost This is related to the expensive nature of building non-trivial soft-
ware. However, given enough time and money, it is possible to overcome this
threat.

Artifact Instantiation Space The way in which many IS artifacts are specified is
intentionally abstract, in order to highlight the theoretical implications over
any implementation specific details. However, this means that the number of
different ways in which a theory can be implemented is large, often intract-
ably so. Spending more time eliciting requirements for a piece of software
helps identify the important parts of the instantiation space to focus on.

Artifact Complexity The inherent complexity of some software systems make
them difficult to implement, and thus risk introducing undesirable effects
into any study making use of that artifact. However, more resources al-
low for better unit, functional, regression, and other forms of testing. This
provides confidence that even if the artifact is complex, it works as expected.
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Threats Not Solved With More Resources

Two threats from Lukyanenko et al. (2015) are less correlated with the resources
committed to implementing a design.

Artifact Medium and Distance IS theories are specified in natural language, dia-
grams, and other explanatory memorandum. However, theories are imple-
mented as software which is written in code and expressed in user interfaces.
This disconnect has the potential to lessen the validity of conclusions drawn
when evaluating implementations.

Technological Progress The norm in UIs and UX change over time. Although
keeping pace with this progress is to some extent a matter of resources, entire
changes in UI paradigms may require validity to be established again each
time a new artifact is implemented.

8.4.2. Additional Threats to Instantiation Validity

This thesis offered several materiality oriented designs in Chapter 4 and 6, proving
specific guidance to those wishing to implement SEBN. Despite this, there were
other threats to IV which were not accounted for. This section presents two new
threats to IV which arise when drawing conclusions from experiments which make
use of software artifacts.

Many IS design theories are implemented in software for the express purpose of
testing the IS theory in question. This usually consists of running an experiment,
whereby participants are asked to perform some task with the newly implemen-
ted software. This is then compared to their ability to perform the task using
their traditional approach. Results are examined to see if the software improves
the ability of the participants to perform the task in question. When such an
experiment is conducted, it is incumbent on the researcher to eliminate as many
threats to validity as possible to ensure any results and therefore conclusions are
not due to extraneous variables. It is desirable if any noted improvement in task
performance can be attributed to the usage of the new artifact.
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Two new threats to IV were identified while using BNE to evaluate SEBN. These
were Generally Technological Literacy and Familiarity with Specific Technologies
and they have the potential to negatively impact the conclusions of any experiment
involving the implementation of a design theory. Both are closely tied to the
field of Human Computer Interaction (HCI) when participants use the software
in an experimental setting. Neither threat is completely averted by adding more
resources to the implementation of SEBN. However, both can be addressed by
ensuring adequate practice and training using BNE to participate in surveys.

General Technological Literacy

Most people will have varying levels of technological literacy. Some may be able to
deal quite comfortably with most devices while others will struggle with each new
device they encounter (e.g. phones, tablets, laptops, TVs, etc). Some may be able
to adapt to different software for achieving the same task, while others are more
comfortable sticking with the software they know (e.g. specific word processors,
photo editing software, etc).

When implementing a software artifact and then conducting evaluations, it is
important to consider the varying level of technological literacy for the target
audience. This can be difficult, given that they will undoubtedly include users
of varying technical literacy. Despite the best efforts of designers and developers,
the most beautiful and usable software may not appear beautiful and usable to
somebody who spends very little of their life using any sort of computer.

If a person who has never used a desktop computer before is asked to perform a
seemingly “simple” task, there can be many barriers. Some of these can be more
obvious than others. For example, they may not:

• Be able to type easily.

• Be able to interpret supposedly “obvious” icons.

• Understand keys such as Ctrl or Alt are for.

• Be familiar with what a mouse is or how it is used.

• etc.
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If an experiment is being performed to see if a new word processor increases a
secretaries proficiency compared to their previous word processor, these types of
consideration are likely unwarranted due to the participants expected technological
literacy. However, asking elderly people who have not been exposed to computers
to use a word processor will have an extremely different result due to a lesser level
of General Technological Literacy. Any experiment to evaluate such a system must
take into account the varying levels of literacy among participants.

Familiarity with Specific Technologies

Even among people with higher levels of General Technological Literacy, their
ability to use a particular piece of software will depend on their Familiarity with
that Specific Technology. One of the main examples at the time of writing is the
difference between idiomatic Android and iOS user interfaces (UIs). If a user has
only ever been exposed to Android UIs, then even the most carefully thought
out iOS implementation may result in confusion and thus not be very usable for
particular users. The classic problem is that all modern Android devices have
a “back” button in the same location, whereas the UX for going “back” in iOS
is different. Another, even more specific (but no less important) example is the
difference between versions of the same OS. Notably, the move from Microsoft
Windows 7 to Windows 8 caused much consternation amongst even the most
hardened computer users. A similar situation arose when Android moved from
Android 4.4 and the “Halo” theme to 5.0 and the “Material” theme.

A naive attempt to eliminate this threat when conducting experiments that use
software could be to implement the software for each major platform that parti-
cipants are expected to be familiar with (provided there is enough resources to
overcome the Artifact Cost threat). However, then it becomes very difficult to
reason about any undesirable effects identified in the experimental results. For
example, how would one discern whether such effects were due to:

• Idiosyncrasies between the development process for multiple platforms?

• More technically proficient users gravitating towards one platform in general?

• The underlying design theory being incorrect?
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If the differences in experimental results do turn out to be due to idiosyncrasies
between the artifact implementation on each platform, then the solution cannot be
to make the experience as unified as possible. This would negate the whole point
of Familiarity with Specific Technologies because each implementation would have
to make sacrifices that result in a less idiomatic piece of software.

8.4.3. Addressing Instantiation Validity

Perhaps the best way to address these issues in a research setting is to ensure that
appropriate training is provided to each participant before evaluating software. By
committing the relevant amount of time to training, the effects of any potentially
confusing HCI problems may be reduced. The extent of this practice effect is yet
to be determined, but future research should investigate further.

Beyond encouraging participants to practice, it is suggested that at the very least,
such threats to IV are identified and accounted for when reporting results of IS
evaluations. Further research is required to better understand how the two threats
discussed above can be mitigated, as well as identify further threats to IV. Such
research will help to ensure that IS research is robust and able to stand by any
claims arising from experiments involving software implementations.

8.5. Research Contributions

Despite the evaluations not coming up with ideal results, there were still many
contributions made during this thesis. The introductory chapter discussed the
expected contributions of this research. They were:

Theoretical Investigating the use of surveys to elicit BNs in place of face to face
interviews.

Practical A software tool for constructing BNs via KA.

Methodological Contributions to the theory of DSR with regard to Instantiation
Validity.
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8.5.1. Contributions to Theory

The first contribution came about due to the lack of theory present in past re-
search using surveys to elicit BNs. In this research, it was shown that surveys can
indeed be used as a tool to elicit BNs, but with certain caveats. Unfortunately the
BNs elicited during evaluation did not compare favourably to the gold standard
network. However, the survey elicitation technique did excel in some areas. It
was successfully used to conduct a survey that enlisted a large number of people
without a large workload on behalf of the survey administrator. The amount of
effort required by the administrator, and by each individual expert, did not change
between 5 or 70 people participating. The evaluations did not show any reason
why this number couldn’t grow arbitrarily high without undue burden on par-
ticipants or organisers. In addition, the method incorporates ideas from crowd
sourcing which were previously foreign to the field of BN elicitation. It is hoped
that these ideas can be further developed as research in the field of crowd sourcing
continues unabated (see Section 8.7.6, p217).

8.5.2. Contribution to Practice

The practical contribution came in the way of a web application for administering
online surveys in order to construct BNs, called BN Elicitator (BNE, Serwylo,
2013). BNE is published as open source software under the GNU GPLv3 License,
which encourages contributions to make the tool better. Although the evaluation
did not result in a positive result, the licensing of the software ensures that any
future work to improve the method is able to build upon the already existing
software, rather than starting from scratch.

BNE was used in the evaluation which took place in Chapter 5 and Chapter 7
(car insurance risk assessment). Also, as a proof of concept it has been configured
for the completely different domain of water management for wild rivers, though
a survey wasn’t conducted. The software has two main components, the ability
to elicit BN structures, and also to elicit CPTs. Processes that the software takes
care of include:
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• After configuring BNE with variables of interest, all required questions are
automatically generated.

• Participants are automatically allocated questions the first time they log on.

• Automatic collation of responses from multiple experts. This implementation
uses the majority vote and ML algorithms, but others could be used in the
future.

• Output of the BN to file formats used by major BN software.

• Graphical output of the resulting BN.

The future work in Section 8.7.11 (p220) chapter will discuss plans to further
develop BNE to address these and other concerns.

8.5.3. Contributions to Methodology

Section 8.4 discusses additions to Instantiation Validity which were identified dur-
ing this thesis. In addition to the five threats identified by Lukyanenko et al.
(2014), this thesis contributed the two additional threats of General Technological
Literacy and Specific Familiarity with Technologies. After defining the threats, a
discussion is presented of how they may be addressed by devoting more time to
training users of the system.

8.6. Limitations

The two main limitations of this thesis arose due to the choices taken during
evaluation. While the principle of comparing an existing gold standard network
to one elicited using a new method under study has been well established (e.g.
Kennett et al., 2001; Tsamardinos et al., 2006), there were some limitations due
to the specific evaluation undertaken in this thesis. Firstly, the insurance network
used as the gold standard (Section 5.1.3) was from a different country, and was over
15 years old by the time the evaluation for this thesis was conducted. Secondly,
some assumptions were made when choosing participants for the evaluation in
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Chapter 5 and Chapter 7. In hindsight, these assumptions were too strong and
the criteria for selecting participants should have been more strict.

The post-hoc analysis described in Section 5.7 investigated whether it was justi-
fied to enlist lay participants with experience driving, in preference to insurance
experts. The results of that analysis showed that there seems to be a lot of useful
information which can be gleamed from using such a population of proxy experts.
However, there are also some drawbacks as there will inevitably be questions which
would be answered much better by an insurance expert. The results of the eval-
uation in this thesis showed that BN arcs which have high agreement among the
lay participants were quite informative. However, given the post-hoc nature of
the analysis which drew this conclusion, further research is required in order to
identify how much agreement should be required before deciding to include an arc
in the resulting BN.

8.7. Future Work

This research presented the new concept of SEBN, with a large amount of scope for
incorporating interesting and useful features to facilitate more effective or efficient
elicitation of BNs. However to prevent scope creep, this project focussed on rigor-
ously evaluating an initial proposal to elicit BNs via online surveys. Throughout
the thesis, where interesting opportunities for expanding the research were identi-
fied, they were documented in this section to maintain focus.

8.7.1. Further Evaluation with Experts

It would be ideal to conduct further evaluations of SEBN with experts. One limit-
ation of the research was that those recruited to take part were not experts, for the
reasons discussed in Section 5.1.4 (p106). This means that no inferences can be
made about whether experts would have performed better, had they participated.
In addition, to provide an even more thorough evaluation, one BN should be eli-
cited using traditional KEBN and a second one via SEBN. A direct comparison of
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these techniques would provide further insight into when one method is preferable
over the other.

8.7.2. Evaluate the BN Elicitator Software

The BNE software was used as a tool to evaluate SEBN presented in Chapter 4 and
Chapter 6. What is lacking is a rigorous evaluation of the software itself. In DSR
terminology, this equates to an evaluation of an instantiation, rather than using an
instantiation to evaluate a method or model. There should be future evaluations
to formally evaluate BNE to make sure it adheres to the design in Chapter 4 and
Chapter 6. Such evaluations should pay close attention to Instantiation Validity,
to ensure there are not any extraneous variables influencing the usability of BNE.

8.7.3. Further Investigation and Validation of the Weighted
Sum Algorithm

The weighted sum algorithm from Das (2004) is as follows:

Pr(A = a|X = x, Y = y) ≈

∝ wx × Pr(A = a|CPC(X = x)) + wy × Pr(A = a|CPC(Y = y))

In each case, Pr(A = a|CPC(N = n)) seems to act as a proxy for the simpler
Pr(A = a|N = n). As such, the approximation ends up like so:

Pr(A = a|X = x, Y = y) ≈

∝ wx × Pr(A = a|X = x) + wy Pr(A = a|Y = y)

If that is indeed the case, it would be simpler to elicit the conditional probabilities
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Pr(A = a|N = n) directly, rather than the proxy of Pr(A = a|CPC(N = n)).
This is discussed by Kim and Pearl (1983) who discuss the principle of approxim-
ating Pr(A|B,C) as proportional to Pr(A|B) ∗ Pr(A|C) in certain “dominating”
relationships. While Das (2004) does introduce weighting on top of this, they
neglect to address the limitations discussed by Kim and Pearl (1983). Further
investigation is required to better understand the relationship between CPCs and
the conditional probabilities themselves.

Another alternative could be to ask the experts to elicit the top n most compat-
ible parent configurations. Doing so would provide a more accurate estimate of
the relevant probabilities, at the expense of more questions and thus more time
required of experts.

8.7.4. Variable Elicitation and Classification via Surveys

The beginning of Chapter 4 (p73) mentioned that the scope of this thesis prohibited
an approach for eliciting variables through surveys. There are some elicitation
techniques which transfer particularly well to the process of survey systems, such
as the Repertory Grid (Kelly, 1955), Max100 (Bottomley and Doyle, 2001), or
Analytical Hierarchy Process (AHP, Saaty, 1977). These should be investigated
to see how they can be used in the elicitation of variables for the subsequent
elicitation of a BN structure. Additionally, each variable would also need to have
a set of associated states elicited, which are used in the CPT elicitation phase.
When considering elicitation of variables and their states, the process of classifying
variables should also be considered (Section 4.3, p80). Once elicitation of variables,
their states, and their classes are incorporated into SEBN, then it provides an end
to end solution for eliciting BNs via online surveys.

8.7.5. Alternate Methods to Elicit BN Structures

Section 4.4 (p85) discussed specifically what questions are allocated to participants
for eliciting the structure of BNs. That is, instead of asking several questions of
the form “Does X influence Y ?”, it encouraged asking one question of the form

216



8.7 Future Work

“Does {A,B,C, ...} influence Y ?”. This allocation of all parent variables of Y
allows tinkering with the way in which relationships are chosen. Future work could
incorporate ideas such as asking “Which n of the following variables influence Y
the most?”. This will help with restricting the number of parents of a given node,
by artificially introducing scarcity resulting in simpler models. It would also ensure
there is more information provided by the expert, to be incorporated into crowd
sourcing algorithms for collating results.

8.7.6. Investigate Different Collation Algorithms

Dawid and Skene (1979) proposed ML as one algorithm for collating multiple re-
sponses together into an authoritative result. It would be worthwhile investigating
other, more comprehensive algorithms, to see if they have an effect on the eval-
uation results. Examples of such are Ipeirotis et al. (2010); Organisciak et al.
(2012); Raykar et al. (2010); Sheng et al. (2008); Wauthier and Jordan (2011);
Whitehill et al. (2009); Zhou et al. (2012).

In addition to the possibility of better collated BN structures, some of these al-
gorithms provide better mechanisms for inferring the expertise of participants.
Section 5.5 (p140) showed that in the evaluation study undertaken, the estimated
quality of experts did not correspond well to the actual accuracy they exhibited
compared to the gold standard. Although this was only one survey, with one gold
standard network, it shows that the Ipeirotis et al. (2010) algorithm may not be
suitable in this situation. Other algorithms should also be investigated, such as
Bachrach et al. (2012); Wauthier and Jordan (2011), and Raykar et al. (2010).

8.7.7. More Allocations

The BNE software allocates a fixed number of questions to each expert. Sheng et al.
(2008) uses active learning to change the proposal from “Each question should be
answered by n different experts” to seeking out troublesome questions that seem
to divide the experts. Such questions should be allocated to a greater number of
experts to facilitate the elicitation of more opinions. For example, experts who
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have completed the survey could be given the opportunity to continue answering
further questions.

This approach helps to better utilise the precious resource that is experts time,
directing it to questions which require it more. The main concern with this is that
there are multiple phases of elicitation (structure and CPT), and experts who tire
themselves out on the first phase may be less willing to return for CPT elicitation.

8.7.8. Heuristics for Removing Cycles

When collating survey responses from multiple experts into BN structures, the
result often contains cycles. Section 4.6.1 (p93) discussed one heuristic from Mar-
garitis and Thrun (1999) for deciding which relationships would be the least harm-
ful to remove in order to obtain a DAG. It is worthwhile looking into additional
heuristics for deciding which arcs to remove.

Maximizing network score If the CPTs are being learnt from data, allowing CPT
elicitation to be conducted by software rather than expert elicitation, then
the network score (e.g. BIC) could be maximized, regardless of the strength
of the arcs.

Preferring arcs with higher strength Some arcs have stronger support from ex-
perts than others (e.g. due to greater majority of experts agreeing, higher
self confidence judgements, or an algorithm such as Dawid & Skene). The
number of strong arcs removed should be minimized, by preferring to remove
weakly supported arcs.

Preferring higher total strength Preferring individual strong arcs may select a
small number of strong arcs at the expense of many week arcs. An alternative
is to optimize for the highest total strength of all included arcs.

Minimize arc reversals As was shown in the evaluation (Section 5.2.2 p114), the
algorithm from Margaritis and Thrun (1999) which includes reversing arcs
can result in undesirable reversals and thus non-causal relationships. Optim-
izing for the minimum number of reversed arcs would reduce this problem.
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8.7.9. Modifying BNs

Over time, information about a particular domain may change. In response, it is
important to be able to update predictive models that are used in that domain.
The technique described in this thesis could be amended to facilitate updating of
BNs. One such approach could involve creating mock experts who automatically
submit responses to the survey, obtained from knowledge encoded in the previous
BN. Change aversion can be introduced by increasing the number of mock experts
seeded with previous data. This requires a higher threshold from real expert
responses in order to augment the structure. However, modifying the structure
of BNs should be done with care, as minor changes to the structure can result in
drastic changes to the required CPTs.

8.7.10. Other Odd Looking and Non-Idiomatic Patterns or
Optimisations

Various anomalies and opportunities for optimisation were discussed in Section 4.6
(p92). The anomalies discussed include the introduction of cycles and potentially
redundant relationships. Opportunities for optimisation included identifying pat-
terns that might indicate NoisyOR and NoisyMAX relationships. Once a frame-
work is in place for presenting anomalies to participants and asking for feedback to
help resolve the anomalies, then additional patterns can be searched for. Likewise,
additional optimisations could also be searched for.

This is similar in spirit to the concept of BN “idioms” (Neil et al., 2000) or “build-
ing blocks” which are reusable patterns that appear in many different BNs. An-
other similar analogy is software design patterns (Gamma et al., 1994) which help
software engineers to re-use solutions to common problems. By understanding
when each BN idiom tends to appear, and the type of problem it helps to solve,
knowledge engineers are better able to develop new networks.

It should also be noted though, that enlisting the help of survey participants to
resolve anomalies or to identify potential for optimisation will increase the burden
on them. This goes directly against Proposition 2 (p61). As such, careful thought
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should be put into whether the improvement to be gained is worth the extra time
and effort, especially when compared to using traditional KEBN.

8.7.11. Further Refinement of BNE

Section A.5 (p241) discusses future work to be undertaken to refine the BNE
software. This includes changes to the way in which variables are allocated to par-
ticipants, and moving towards a Software as a Service (SaaS) style of deployment.
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A. BNE Implementation Details

This appendix presents details of the BNE software (Serwylo, 2013) which imple-
ments SEBN, both for structure and CPT elicitation. The software is licensed
under the GNU GPLv3 license (Free Software Foundation, 2007). BNE is a web
application, and was used as the survey software for evaluating SEBN in Chapter 5
and 7. The evaluations were conducted by configuring BNE with variables from
the car insurance network (Binder et al., 1997), although the software is built in
such a way as to be agnostic of the specific BN which is being elicited.

The following section will discuss the technical aspects of the software, before
Section A.2 provides an overview of how to configure the system. Section A.3
then discusses some specifics of how BNE was used to conduct SEBN in this
thesis. Analysis of survey results using BNE is discussed in Section A.4, before
Section A.5 discusses avenues for future research and development involving BNE.

A.1. Tech Stack

The software is written in Groovy1 which is a JVM based language. Groovy
allows writing code which ineroperates with existing Java libraries, but using a
more concise syntax than Java. It also provided many functional features which
eased development before they were implemented and released in Java 8.

The framework used to build the application was Grails2. Grails was chosen as
it focuses on “convention over configuration” which emphasises sane configuration

1http://groovy-lang.org (Last retrieved 2016-04-01)
2https://grails.org (Last retrieved 2016-04-01)
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default. This resulted in less time configuring the Grails framework and more time
developing BNE.

Grails applications can use most popular database engines. For the purpose of the
evaluations in this thesis, MySQL3 was used due to the authors familiarity with
it.

The Grails framework outputs J2EE applications, and BNE is no exception. BNE
can be deployed in any J2EE container software. For the purpose of the evaluations
in this thesis Apache Tomcat4 was chosen as it was available in the official Debian
repositories. The Tomcat server sat behind an Apache25 reverse proxy.

A.2. Configuration

In order to configure the system, a configuration file must be provided. The
one used by the evaluations in this thesis is available at https://github.com/
bn-elicitator/bn-elicitator/blob/v0.0.3/grails-app/utils/bn/elicitator/
init/loaders/InsuranceDataLoader.groovy.

First and foremost, the configuration file must specify the list of variables. This
is because SEBN does not specify how to elicit variables. Rather, at this point
they must be specified from some predetermined source (e.g. traditional KEBN).
When specifying variables, detailed descriptions are also required so they can be
shown as contextual help whenever a variable is displayed to the user. In addition,
the way in which the variable should be phrased when put into a procedurally
generated question is configured.

Once the variables are specified, they are then classified. The default implement-
ation of the configuration file allows for background, mediating, problem, and
symptom variables as per Kjærulff and Madsen (2013). These are the classes used
for the insurance network during the evaluations. However, https://github.com/
bn-elicitator/bn-elicitator/blob/v0.0.3/grails-app/utils/bn/elicitator/

3https://dev.mysql.com (Last retrieved 2016-04-01)
4https://tomcat.apache.org (Last retrieved 2016-04-01)
5https://httpd.apache.org (Last retrieved 2016-04-01)
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A.3 Conducting SEBN via BNE

init/loaders/Chan2010DataLoader.groovy shows an example configuration file
for the Chan et al. (2010) water management network. In this case, the constraints
between each variable class are also specified. The default configuration is setup
with the generic variable classes with dependencies shown in Figure 4.7 (p83).

Finally, the configuration file must specify the states each variable can take. As
with the variables themselves, it is important to also provide detailed labels for
each state, so that it can be used to generate questions as per Section 6.2 (p156).

A.3. Conducting SEBN via BNE

Experts are either able to signup for the system themselves (using their Facebook
account or creating an account in BNE), or be manually added via the adminis-
tration interface.

When running the system, there are two modes:

1. Structure elicitation

2. Probability elicitation

The structure elicitation mode is an implementation of SEBN as per Chapter 4,
while the probability elicitation follows the process in Chapter 6.

The first time participants sign in they are allocated a set of questions as per
Section 4.4 (p85) or Section 6.3 (p168), depending on the mode. The configuration
file allows the administrator to specify how many questions should be allocated to
each participant.

As participants work their way through their allocated survey questions, BNE logs
information such as when they started the survey, when each question is answered,
and when they finish their survey. This is so that BNE can be used as a research
tool to investigate SEBN. Of particular interest to this thesis was how much time
is required of experts to elicit BNs.

Another facet of BNE which makes it useful as a tool for researching SEBN is the
option of conducting questionnaires at the conclusion of the probability elicitation
survey. This feedback survey is separate from the SEBN, and exists for the purpose
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of collecting feedback about users experience using BNE and SEBN. During the
evaluation survey in Chapter 7, this was also used in order to collect demographic
information about the participants. Administrators are able to configure arbitrary
questions if they choose to use BNE for their own studies.

A.4. Analysing Results

BNE provides several different ways to analyse the BN structures and CPTs elicited
during surveys. These features were implemented primarily so that the software
could be used as a tool to evaluate SEBN. Much of the analysis done in the eval-
uation chapters of this thesis made use of BNE to calculate the required metrics.

Firstly, BNE is capable of collating several different BN structures using different
majority vote thresholds, or EM priors. This results in several different candidate
structures for comparison. It will also estimate the quality of each expert when
collating structures using EM.

If provided with a gold standard network, as was the case in the evaluations
performed during this thesis, then BNE will calculate the following metrics for
each collated structure:

• Number of arcs

• SHD

• ROC metrics (i.e. TPR, FPR)

Other analysis performed by BNE for the purpose of evaluation during this thesis
includes attempting to verify the intuitions from the Das (2004) algorithm. This is
done by comparing explicitly elicited conditional probabilities with those inferred
from the weighted sum algorithm.
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A.5. Future work

A.5.1. GUI Configuration

Some of the configuration in BNE can be achieved via a GUI. Examples include
adding new user accounts for experts to sign in and editing the landing page.
However, even more of the configuration is done via text files. Examples include
adding and classifying variables. By allowing all of BNE to be configured via the
GUI, users needn’t have access to the server in order to configure it.

A.5.2. Multiple surveys on one installation

Currently, the software implementation of SEBN is quite general, and able to be
used for construction of other BNs beyond those created for the evaluations in
this thesis. The caveat is that setting up BNE to administer surveys is quite a
manual process. With an automated deployment process and a further refined
user interface, this process can be made easier. The end result is that no technical
skills would be required to initiate a survey and thus construct a BN.

Improving the software such that lay users are able to make use of it should also
allow it to be deployed using a Software as a Service (Saas) model. Most current
software for eliciting BNs is still sold as installable programs. SaaS would allow
people wishing to utilise BNs to log on to a website, enter the data they are
interested in eliciting, then sending links to experts asking them to complete the
survey. The output of these completed surveys would be a complete BN, along
with metrics such as how confident BNE is in certain relationships.

A.5.3. Allocating Variables Based on Number of Responses

The implementation in the BNE software built for this research chooses questions
to allocate based on those which had been allocated to the fewest experts. However,
this should have been questions which hadn’t been answered yet. During the
evaluation in Chapter 5, some variables were only answered by 2 people despite 6
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being allocated. This would not have been problematic if the allocation strategy
favoured questions answered the least number of times, as a variable answered by
2 people would be at the front of the queue to be allocated to another participant.
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B. Results of Collating Responses

In order to produce a valid BN structure from SEBN, the collated survey responses
must form an acyclic graph. Section 5.2.2 (p114) discussed the Margaritis and
Thrun (1999) cycle removal algorithm, to ensure an acyclic graph for use in a BN.
The following sections show the result of applying this algorithm to the Survey
structures from the evaluation in Chapter 5. At each stage of the algorithm, the
total number of arcs in the network are shown, as is the arc which appears in the
most of these and thus is reversed before proceeding to the next iteration.

B.1. Cycle Removal for Maj Network Structures

The Maj4,5,6 network structures all had zero arcs removed. Thus, this section
shows the arcs that were reversed in the Maj3 and Maj2 structures in order to
ensure they were acyclic.

Cycles in Maj3

Iteration Total cycles Worst arc Appeared in (cycles)
1 76 Accident → DrivHist 40
2 36 Accident→ SeniorTrain 25
3 11 SeniorTrain→ DrivHist 4
4 7 OtherCarCost→ Age 3
5 4 DrivHist→ DrivQuality 2
6 2 Theft→ AntiTheft 1
7 1 DrivHist→ DrivingSkill 1

Table B.1.: Variables removed to eliminate cycles in theMaj3 network structures.
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Cycles in Maj2

Iteration Total cycles Worst arc Appeared in (cycles)
1 6569858 SeniorTrain→ RiskAversion 4148803
2 2421055 OtherCarCost→ Age 1414201
3 1006854 OtherCarCost→ DrivingSkill 679988
4 326866 ThisCarCost→ Age 166567
5 160299 DrivingSkill→ Age 98183
6 62116 ThisCarCost→ SocioEcon 37765
7 24653 ThisCarCost→ MakeModel 18110
8 6543 RuggedAuto→ MakeModel 4094
9 2449 DrivHist→ Theft 2138
10 311 DrivHist→ DrivQuality 103
11 208 DrivingSkill→ DrivQuality 68
12 140 HomeBase→ SocioEcon 28
13 118 Theft→ MakeModel 27
14 91 DrivHist→ DrivingSkill 26
15 65 DrivHist→ SeniorTrain 18
16 47 Accident→ SeniorTrain 18
17 29 Airbag→ VehicleYear 5
18 24 Airbag→ MakeModel 5
19 19 ThisCarDam→ SeniorTrain 5
20 14 Antilock→ VehicleYear 3
21 11 AntiTheft→ Theft 2
22 9 MakeModel→ SocioEcon 2
23 7 OtherCar→ DrivingSkill 2
24 5 Theft→ HomeBase 1
25 4 VehicleYear→ Mileage 1
26 3 SeniorTrain→ DrivingSkill 1
27 2 DrivHist→ Accident 1
28 1 RuggedAuto→ ThisCarDam 1

Table B.2.: Variables removed to eliminate cycles in theMaj2 network structures.
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B.2. Cycle Removal for DS Network Structures

Cycles in DS0.001

Iteration Total cycles Worst arc Appeared in (cycles)
1 24282 ThisCarCost → Age 16095
2 8187 ThisCarCost → MakeModel 6895
3 1292 DrivHist → DrivQuality 647
4 645 DrivHist → DrivingSkill 421
5 224 OtherCar → DrivingSkill 169
6 55 SeniorTrain → RiskAversion 37
7 18 DrivHist → SeniorTrain 5
8 13 Accident → SeniorTrain 3
9 10 DrivQuality → DrivingSkill 2
10 8 Theft → HomeBase 2
11 6 Airbag → MakeModel 2
12 4 Theft → AntiTheft 1
13 3 Age → DrivingSkill 1
14 2 Airbag → VehicleYear 1
15 1 VehicleYear → Antilock 1

Table B.3.: Variables removed to eliminate cycles in the DS0.001 network struc-
ture.
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Cycles in DS0.01,0.05

The DS0.01,0.05 network structures resulted in the same output from the Margaritis
and Thrun (1999) algorithm.

Iteration Total cycles Worst arc Appeared in (cycles)
1 27212 ThisCarCost→ Age 16187
2 11025 ThisCarCost→ MakeModel 8913
3 2112 DrivHist→ DrivQuality 1057
4 1055 DrivHist→ DrivingSkill 657
5 398 OtherCar→ DrivingSkill 267
6 131 SeniorTrain→ RiskAversion 109
7 22 DrivHist→ SeniorTrain 5
8 17 RiskAversion→ Age 4
9 13 Accident→ SeniorTrain 3
10 10 DrivQuality→ DrivingSkill 2
11 8 Theft→ HomeBase 2
12 6 Airbag→ MakeModel 2
13 4 Theft→ AntiTheft 1
14 3 Age→ DrivingSkill 1
15 2 Airbag→ VehicleYear 1
16 1 VehicleYear→ Antilock 1

Table B.4.: Variables removed to eliminate cycles in the DS0.01,0.05 network struc-
tures.
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Cycles in DS0.10

Iteration Total cycles Worst arc Appeared in (cycles)
1 54469 ThisCarCost→ Age 34654
2 19815 ThisCarCost→ MakeModel 15386
3 4429 Accident→ SeniorTrain 2161
4 2268 DrivHist→ DrivQuality 1077
5 1191 DrivHist→ DrivingSkill 581
6 610 DrivHist→ SeniorTrain 527
7 83 Airbag→ DrivingSkill 50
8 33 OtherCar→ DrivingSkill 12
9 21 RiskAversion→ Age 8
10 13 Airbag→ MakeModel 3
11 10 Theft→ HomeBase 2
12 8 DrivQuality→ DrivingSkill 2
13 6 Theft→ AntiTheft 1
14 5 Age→ DrivingSkill 1
15 4 RiskAversion→ SeniorTrain 1
16 3 Airbag→ VehicleYear 1
17 2 VehicleYear→ Antilock 1
18 1 DrivHist→ Accident 1

Table B.5.: Variables removed to eliminate cycles in theDS0.10 network structure.
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Cycles in DS0.15

Iteration Total cycles Worst arc Appeared in (cycles)
1 350757 ThisCarCost→ MakeModel 176762
2 173995 ThisCarCost→ Age 130887
3 43108 OtherCarCost→ Age 23924
4 19287 OtherCarCost→ DrivingSkill 10617
5 8670 SeniorTrain→ RiskAversion 3637
6 5033 DrivQuality→ RiskAversion 2406
7 2659 DrivingSkill→ RiskAversion 1702
8 957 DrivingSkill→ Age 730
9 227 Accident→ DrivQuality 81
10 146 DrivHist→ DrivQuality 60
11 86 DrivHist→ DrivingSkill 42
12 44 SeniorTrain→ OtherCar 24
13 20 DrivHist→ SeniorTrain 4
14 16 Accident→ SeniorTrain 4
15 12 Airbag→ MakeModel 3
16 9 Theft→ HomeBase 2
17 7 OtherCar→ DrivingSkill 2
18 5 Theft→ AntiTheft 1
19 4 DrivQuality→ DrivingSkill 1
20 3 Airbag→ VehicleYear 1
21 2 VehicleYear→ Antilock 1
22 1 DrivHist→ Accident 1

Table B.6.: Variables removed to eliminate cycles in theDS0.15 network structure.
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Cycles in DS0.20

Iteration Total cycles Worst arc Appeared in (cycles)
1 663271 ThisCarCost→ Age 279515
2 383756 ThisCarCost→ MakeModel 233892
3 149864 Theft→ MakeModel 93959
4 55905 OtherCarCost→ Age 31811
5 24197 OtherCarCost→ DrivingSkill 13390
6 10807 SeniorTrain→ RiskAversion 4560
7 6247 DrivQuality→ RiskAversion 2998
8 3281 DrivingSkill→ RiskAversion 2111
9 1170 DrivingSkill→ Age 943
10 227 Accident→ DrivQuality 81
11 146 DrivHist→ DrivQuality 60
12 86 DrivHist→ DrivingSkill 42
13 44 SeniorTrain→ OtherCar 24
14 20 DrivHist→ SeniorTrain 4
15 16 Accident→ SeniorTrain 4
16 12 Airbag→ MakeModel 3
17 9 Theft→ HomeBase 2
18 7 OtherCar→ DrivingSkill 2
19 5 Theft→ AntiTheft 1
20 4 DrivQuality→ DrivingSkill 1
21 3 Airbag→ VehicleYear 1
22 2 VehicleYear→ Antilock 1
23 1 DrivHist→ Accident 1

Table B.7.: Variables removed to eliminate cycles in theDS0.20 network structure.
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Cycles in DS0.25

Iteration Total cycles Worst arc Appeared in (cycles)
1 812194 ThisCarCost→ MakeModel 314153
2 498041 ThisCarCost→ Age 279515
3 218526 Theft→ MakeModel 107986
4 110540 HomeBase→ Age 54635
5 55905 OtherCarCost→ Age 31811
6 24197 OtherCarCost→ DrivingSkill 13390
7 10807 SeniorTrain→ RiskAversion 4560
8 6247 DrivQuality→ RiskAversion 2998
9 3281 DrivingSkill→ RiskAversion 2111
10 1170 DrivingSkill→ Age 943
11 227 Accident→ DrivQuality 81
12 146 DrivHist→ DrivQuality 60
13 86 DrivHist→ DrivingSkill 42
14 44 SeniorTrain→ OtherCar 24
15 20 DrivHist→ SeniorTrain 4
16 16 Accident→ SeniorTrain 4
17 12 Airbag→ MakeModel 3
18 9 Theft→ HomeBase 2
19 7 OtherCar→ DrivingSkill 2
20 5 Theft→ AntiTheft 1
21 4 DrivQuality→ DrivingSkill 1
22 3 Airbag→ VehicleYear 1
23 2 VehicleYear→ Antilock 1
24 1 DrivHist→ Accident 1

Table B.8.: Variables removed to eliminate cycles in theDS0.25 network structure.
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Cycles in DS0.30

Iteration Total cycles Worst arc Appeared in (cycles)
1 1776719 ThisCarCost→ Age 655710
2 1121009 ThisCarCost→ MakeModel 532717
3 588292 AntiTheft→ RiskAversion 243032
4 345260 HomeBase→ Age 135872
5 242602 Theft→ MakeModel 143931
6 98671 OtherCarCost→ Age 56039
7 43043 OtherCarCost→ DrivingSkill 21908
8 21135 RuggedAuto→ MakeModel 9080
9 12055 SeniorTrain→ RiskAversion 5342
10 6713 DrivQuality→ RiskAversion 3394
11 3351 DrivingSkill→ RiskAversion 2157
12 1194 DrivingSkill→ Age 966
13 228 Accident→ DrivQuality 81
14 147 DrivHist→ DrivQuality 60
15 87 DrivHist→ DrivingSkill 42
16 45 SeniorTrain→ OtherCar 24
17 21 DrivHist→ SeniorTrain 4
18 17 Accident→ SeniorTrain 4
19 13 Airbag→ MakeModel 3
20 10 Theft→ HomeBase 2
21 8 OtherCar→ DrivingSkill 2
22 6 Theft→ AntiTheft 1
23 5 DrivQuality→ DrivingSkill 1
24 4 Airbag→ VehicleYear 1
25 3 VehicleYear→ Antilock 1
26 2 DrivHist→ Accident 1
27 1 RuggedAuto→ ThisCarDam 1

Table B.9.: Variables removed to eliminate cycles in theDS0.30 network structure.
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Cycles in DS0.35

Iteration Total cycles Worst arc Appeared in (cycles)
1 3548539 AntiTheft→ RiskAversion 1376399
2 2172140 ThisCarCost→ Age 904082
3 1268058 ThisCarCost→ MakeModel 790539
4 477519 OtherCarCost→ Age 196251
5 293739 HomeBase→ Age 156595
6 153178 OtherCarCost→ DrivingSkill 80196
7 72982 Accident→ DrivQuality 31510
8 41472 Accident→ SeniorTrain 23695
9 17777 Accident→ DrivHist 9709
10 8068 Theft→ MakeModel 4276
11 3792 RuggedAuto→ MakeModel 1903
12 1889 ThisCarDam→ DrivHist 997
13 892 DrivHist→ DrivQuality 397
14 495 SeniorTrain→ RiskAversion 215
15 280 DrivQuality→ RiskAversion 129
16 157 DrivingSkill→ RiskAversion 94
17 63 DrivingSkill→ Age 42
18 21 DrivingSkill→ DrivQuality 6
19 15 Airbag→ MakeModel 3
20 12 OtherCar→ DrivingSkill 3
21 9 Theft→ HomeBase 2
22 7 SeniorTrain→ DrivHist 2
23 5 Theft→ AntiTheft 1
24 4 Airbag→ VehicleYear 1
25 3 VehicleYear→ Antilock 1
26 2 DrivHist→ DrivingSkill 1
27 1 RuggedAuto→ ThisCarDam 1

Table B.10.: Variables removed to eliminate cycles in the DS0.35 network struc-
ture.
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C. Results of Structure Evaluation

This section contains detailed results from the evaluation in Chapter 5. Accom-
panying each chart are the raw numbers calculated during the evaluation.

BIC Scores of Evaluation Networks

Method used to produce BN structure

BN Scores
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Figure C.1.: Scores calculated for the Gold and Eval networks.

(a) Maj structures.

Network Score
Maj2 -53389336
Maj3 -13962081
Maj4 -16137169
Maj5 -17193272
Maj6 -17834283

(b) DS structures.

Network Score
DS0.001 -13825782
DS0.01 -13813215
DS0.05 -13814269
DS0.10 -14057724
DS0.15 -13900837
DS0.20 -15051534
DS0.25 -20054815
DS0.30 -48522871
DS0.35 -49668297

(c) Other structures.

Network Score
Gold -11721585

Learntmmhc -13051390
Learntrsmax2 -13137048
Learnttabu -11665848
OtherRand µ = −17469564
OtherZero -18516808

Table C.1.: BIC scores, calculated by sampling a data set from the Gold BN, to
compare to Eval BNs. See Figure 5.15 (p132) for details on parameterisation.
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Results of Structure Evaluation

Number of Arcs in Evaluation Networks

Figure C.2.: Number of arcs in the Gold and Eval networks.

(a) Maj structures.

Network Score
Maj2 121
Maj3 58
Maj4 31
Maj5 11
Maj6 3

(b) DS structures.

Network Score
DS0.0001 0
DS0.001 74
DS0.01 76
DS0.05 78
DS0.10 90
DS0.15 98
DS0.20 103
DS0.25 106
DS0.30 110
DS0.35 119

(c) Other structures.

Network Score
Gold 52

Learntmmhc 46
Learntrsmax2 20
Learnttabu 50
OtherRand µ = 27
OtherZero 0

Table C.2.: Number of arcs in the Gold and Eval networks.
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Results of Structure Evaluation

SHDs of Evaluation Networks

Figure C.3.: SHD of the Eval networks compared to the Gold network.

(a) Maj structures.

Network Score
Maj2 122
Maj3 66
Maj4 49
Maj5 43
Maj6 44

(b) DS structures.

Network Score
DS0.001 77
DS0.01 78
DS0.05 79
DS0.10 95
DS0.15 100
DS0.20 105
DS0.25 108
DS0.30 112
DS0.35 120

(c) Other structures.

Network Score
Gold 01

Learntmmhc 42
Learntrsmax2 40
Learnttabu 36
OtherRand µ = 59.1
OtherZero 42

Table C.3.: SHD of the Eval networks compared to the Gold network.
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Results of Structure Evaluation

F1 Scores of Evaluation Networks

Figure C.4.: F1 score for the Eval networks when compared to the Gold network.

(a) Maj structures.

Network Score
Maj2 0.268
Maj3 0.356
Maj4 0.351
Maj5 0.222
Maj6 0.044

(b) DS structures.

Network Score
DS0.001 0.328
DS0.01 0.339
DS0.05 0.350
DS0.10 0.303
DS0.15 0.329
DS0.20 0.317
DS0.25 0.311
DS0.30 0.289
DS0.35 0.273

(c) Other structures.

Network Score
Gold 1

Learntmmhc 0.376
Learntrsmax2 0.281
Learnttabu 0.636

Table C.4.: F1 score for the Eval networks when compared to the Gold network.
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D. Issues Surrounding Choice of
Gold Standard BN

Section 5.1.3 (p105) discussed in detail the choice of the car insurance network from
Binder et al. (1997) as the gold standard. This section discusses some problems
that arose due to the way in which the evaluations in this thesis changed the gold
standard, and also issues intrinsic to the network itself.

D.1. Differences Between Gold Standard BNand
Evaluation Network

At the outset of the evaluations, a decision was made to remove some information
from the gold standard network, to make it more appropriate for usage with a
cohort of participants from Victoria, Australia. The following sections discuss
these decisions in the context of the BN structure elicitation survey presented in
Chapter 5 and CPT elicitation survey in Chapter 7 respectively.

D.1.1. Variables Removed for Structure Elicitation

Of the original 27 variables in the car insurance network, two were removed. These
were deemed to be unneeded in the context of an Australian study.
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Issues Surrounding Choice of Gold Standard BN

Medical Cost

Although insurers are indeed interested in medical costs in Victoria, it is likely not
as important as in the United States. This is due to the presence of the Traffic
Accident Commission (TAC) in Section 5.1.3 (p105) discussed in detail the choice
of the car insurance network (Binder et al., 1997) as the gold standard. and com-
parable organisations in other states, which pay for injuries arising from traffic
accidents. When registering a vehicle, a mandatory premium is paid to the TAC.
Due to this, the medical cost need not always be paid by private insurance com-
panies. Thus, it seemed counter productive to include the Medical Cost variable
in a survey about insurance risk assessments.

Cushioning

By inspecting the structure of the car insurance network, it seems likely that the
decision to include the Cushioning variable in the original BN was motivated by
its ability to help when reasoning about the Medical Cost variable. Once the
Medical Cost variable was removed, the Cushioning variable did little to impact
the remaining network.

D.1.2. Variable States Removed for CPT Elicitation

For the CPT evaluation study, 3 out of 88 variable states were removed, in addition
to the two variables discussed above. These were removed either to bring the
variables more in line with an Australian cohort of participants, or to reduce the
potential for generating confusing questions.

Make/Model
{SportsCar, Economy, Family Sedan, Luxury, Super Luxury}

The Super Luxury state was removed as the similarity of Luxury and Super Luxury
was not great enough to warrant a further state.

258



D.1 Differences Between Gold Standard BNand Evaluation Network

Car Value
{Five Thousand, Ten Thousand, Twenty Thousand, F ifty Thouand,Million}

Almost all other variables relating to car cost had the following states:

{Thousand, Ten Thousand,Hundred Thousand,Million}

The Car Value variable was brought in line with these, by opting for Thousand
instead of Five Thousand. Likewise, Twenty Thousand and Fifty Thousand were
replaced with Hundred Thousand. In hindsight, this was a mistake as the value of
a car will likely be less than other values considered by an insurance company (e.g.
total cost to insurer), and should have remained discretized into smaller groups as
it was originally.

Socio Economic Status
{Prole,Middle, UpperMiddle,Wealthy}

The UpperMiddle state was removed as it was deemed to be something which
was not well enough defined to ask the participants about. Even with this state
removed, some participants still commented that “The initial section categorises
people whcih [sic] i [sic] did not like to do”. This type of concern could be alleviated
in future studies by more training of participants, thus being able to calibrate their
expectations of the type of questions that require answering and why.

D.1.3. Issues Arising due to Variable and State Removal

At the time the decision was made to remove the small number of variables and
states above, it was deemed that the removal would not have an effect on the
evaluation. The reasoning was that because variables were being removed and
not added, they could also be removed form any test data sets used to evaluate
the resulting survey BN. However, perhaps counter-intuitively, removing only one
state causes more trouble for evaluation than does removing an entire variable.
For example, consider the following data sets shown in Table D.1. The original
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Table D.1.: Ramifications of removing a single variable vs removing a single state.

(a) Sampled data from the Gold BN.

Socio Economic Status Driving Skill Car Value Cushioning Airbag
Middle Normal $1,000 Poor False

Upper Middle Normal $10,000 Fair True
Wealthy Normal $100,000 Excellent True

(b) Removing an entire variable from the data set.

Socio Economic Status Driving Skill Car Value Cushioning Airbag
Middle Normal $1,000 N/A False

Upper Middle Normal $10,000 N/A True
Wealthy Normal $100,000 N/A True

(c) Removing an individual state from the data set.

Socio Economic Status Driving Skill Car Value Cushioning Airbag
Middle Normal $1,000 Poor False
N/A Normal $10,000 Fair True

Wealthy Normal $100,000 Excellent True

data set in Table D.1a has all of the variables and states that exist in the Gold
BN. When removing the Cusioning variable in Table D.1b, the data set is still a
complete data set, albeit with one less column. However, when removing only an
individual state (Table D.1c), the resulting data set contains missing values, as
the entire column wasn’t removed.

Most software for comparing a BN to a data set in order to see how well the BN
models the data, require the BN and the data set to have the same set of variables
and states. Ensuring the data sampled from the Gold network corresponds to the
Eval network structure requires reconciling the same variables. Given the evalu-
ation contained two less variables than the Gold network, this involved removing
the two variables from any sampled data (e.g. Table D.1b). The absence of an
entire column from a data set does not prove to be problematic.

Removing individual states, however, proves more troublesome. Each data point
that corresponds to a removed state must also be removed (Table D.1c). The
question then becomes, what is it replaced with, or is it replaced at all? Should
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the resulting row be discarded entirely? Would discarding the entire row cause a
bias against samples which tend to gravitate toward the removed states? These
questions are all the exact same questions asked of statisticians when dealing with
missing data. The only difference is that the missing data was induced due to
an error on behalf of the researcher in this project, rather than some stochastic
process or measurement error.

Solving the Missing Data Problem

It was decided that the rows with missing data should remain. To illustrate,
consider the removal of the Upper Middle state of Socio Economic Status. If each
entire row containing the Upper Middle state was removed, it would likely have
inadvertently created a bias against other variable states expected of wealthy car
owners, such as Luxury Make/Models.

To retain rows with missing data, the data must be replaced in a principled manner.
One suitable method for replacing such data is Multiple Imputation (MI), discussed
in detail by Schafer and Graham (2002) and others. MI involves each missing piece
of data being imputed several times using a Bayesian approach. Any analysis that
was planned for the entire data set can then be conducted on the imputed data
sets. This is done several times, for different imputations, before the results are
then aggregated and averaged.

D.2. CPTs Which Were Evaluated

Due to the removal of variables discussed above, the evaluation of CPTs elicited
using SEBN (Chapter 7) was only able to be applied to 11 out of the 27 variables
in the gold standard BN. Table D.2 shows the list of variables which were analysed,
and lists why the excluded variables were not analysed.
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D.3. Other Issues with Gold Standard BN

In addition to the changes to the network discussed above, there are also some
other problems with the car insurance network Binder et al. (1997). In hindsight,
these issues indicate that it was perhaps not the optimal choice for a gold standard.

Exhaustive Variable States

For variables to be useful in BNs, the states they can take should be exhaustive
and mutually exclusive. However, some of the states in the car insurance network
are not exhaustive, for example:

Make/Model {SportsCar, Economy, Family Sedan, Luxury, Super Luxury}

Car Value {Five Thousand, Ten Thousand, Twenty Thousand, F ifty Thouand,Million}

There are clearly more car types than just those specified by Make/Model. Per-
haps a bit more subtly, the Car Value could either be taken to represent <
Five Thousand up to < Million (which excludes values above one million), or
> Five Thousand up to > Million (which excludes values less than five thou-
sand).

Mutually Exclusive Variable States

In addition to not being exhaustive, some variables do not encode mutually ex-
clusive states, such as:

Home Base {Secure, City, Suburb, Rural}

The states of the Home Base variable are not mutually exclusive, as it is very likely
that there is secure parking in the city, in the suburbs, or in rural areas.

Age of the Network

The car insurance network was published in 1997, and thus only has a small
number of safety features incorporated into the network (e.g. Airbag). Since 1997,
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several new safety features have either been introduced, or made their way into
a greater number of consumer automobiles. These features include Electronic
Stability Control, Antilock Brakes, Adaptive Cruise Control, and others. This
may have changed the way in which participants answered questions during SEBN
about the chance of an accident occurring.
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(a) Variables with
no parents.

No parents

Age
Mileage

(b) Variables with a single parent.

Single Excludedparents
ILiCost

SocioEcon Related to
OtherCar SocioEcon,

which had a
different CPT
between Gold
and Survey

(c) Variables with multiple parents.

Multiple Excludedparents
DrivingSkill
Accident

SeniorTrain
DrivQuality
DrivHist

ThisCarDam
OtherCarCost

PropCost
GoodStudent Related to
RiskAversion SocioEcon,
AntiTheft which had a
HomeBase different CPT
VehicleYear between Gold
MakeModel and Survey
MedCost MedCost irrelevant
Cushioning to Australia and

Cushioning only
impacts MedCost

RuggedAuto Other misc data
Antilock collection errors in
Airbag BNE software caused
Theft some elicited values

ThisCarCost to not be submitted.

Table D.2.: The variables which were used in the evaluation in Chapter 7.
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SEBN discussed in Chapter 4 discusses a technique proposed by Kjærulff and
Madsen (2008) for constraining the possible questions when eliciting a BN struc-
ture. This appendix performs a post-hoc analysis of the water management BN,
developed by Chan et al. (2010) using traditional KEBN. The goal was to see how
the magnitude of the SEBN task could be reduced if the survey questions were
based on domain specific variable classes.

The entire BN from Chan et al. (2010) is shown in Figure E.2, including all 49
variables. If the naive adjacency-matrix question generation approach was used
(e.g. Xiao-xuan et al., 2007), then all 49 variables would be eligible to depend on
all other variables, resulting in 2352 questions (n2 − n).

Figure E.1.: Comparison between generic and domain specific variable classes,
and the inter-class dependencies they exhibit.

(a) Generic variable classification
scheme, adapted from from Kjærulff
and Madsen (2008) and discussed in
Section 4.3 (p80).

(b) Domain specific classes identified in the Chan
et al. (2010) BN.
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Class Variables in class Variables that can Resulting survey
influence those in class questions

Management 10 28 270
Sustainability 14 35 476

Climate 3 3 6
Human Activities 8 18 136

Affordability 10 18 170
Water Quality 4 31 120

Total 49 N/A 1178
Table E.1.: Number of variables in each domain specific class, and the resulting
number of survey questions required.

However, Chan et al. (2010) discussed some key classes of variables that appear in
the network (Figure E.2b). The inter-class dependencies were ascertained during
this analysis by analysing the dependencies between each variable class in the final
BN. The way in which each variable was classified for the purpose of this analysis
is shown in Figure E.2.

When constraining the generated SEBN questions based on these domain specific
classes, the number of possible relationships is constrained by almost exactly 50%
(from 2352 possible questions to 1178, Table E.1).

Note on Domain Specific Variable Classification

The decision as to whether a variable class from Chan et al. (2010) can influence
others was deduced by looking at the BN in Figure E.2. Any variables which in-
fluenced those in a separate class induced a dependency between those two classes.
Note that in a real SEBN project, this is not how class dependencies are inferred,
because a causal BN likely doesn’t yet exist. Rather, experts would be employed to
discuss the potential for causal dependencies between variables of differing classes.
Thus, this analysis and the subsequent reduction in survey questions should be
treated as post-hoc analysis. Further research should be done to investigate the
use of domain specific variables, and how successful they are (or are not) at redu-
cing the amount of questions required, or allowing experts to be allocated questions
in their specific area of expertise.
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Figure E.2.: The network from Chan et al. (2010) after manually classifying
variables into six different categories for the purpose of this analysis.
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F. Question Generation Examples

Shown in this appendix is a collection of survey questions that were asked as part
of the evaluations in Chapter 5 and 7. The questions were generated using SEBN,
based on the variables and networks structure of the car insurance network (Binder
et al., 1997).

F.1. Structure Elicitation Questions

Section 4.4.1 (p86) discussed how the generated questions in BNE are grouped
together based on variables in an adjacency matrix. For each column in the matrix,
a question such as : “Do any of the following {X, Y, Z} influence A?” is generated,
where A is the column of the matrix, and {X, Y, Z} are the rows (excluding A).
Listed below is a selection of questions that resulted from the car insurance network
using this question format. Each potential child variable was listed below the
question, with an option for “Yes” or “No” (Figure F.1).

GoodStudent "Do any of the following have a direct influence on the fact that
the client was a good student when the learnt to drive ?"

Age "Do any of the following have a direct influence on the Age of the client?"

RiskAversion "Do any of the following have a direct influence on the Risk aversion
of the client?"

VehicleYear "Do any of the following have a direct influence on the age of the
client’s vehicle?"

ThisCarDam "Do any of the following have a direct influence on whether a client’s
car is damaged?"
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Figure F.1.: Screenshot from BNE software configured with variables from the
insurance network.

RuggedAuto "Do any of the following have a direct influence on the strength of
the client’s car?"

Accident "Do any of the following have a direct influence on whether the client
becomes involved in an accident?"

After using SEBN to elicit the structure of a BN in Chapter 5, it became evident
that the phrasing of the questions appeared backward. Instead of asking: “Do
any of the variables below this have an influence on this”, they should have asked
“Does this variable influence any of those below”. The BNE software has been
changed to reflect this for future elicitations.

F.2. Probability Elicitation Questions

When generating questions for CPT elicitation using SEBN, Section 6.2 (p156)
discusses how the choice of questions depends on how many parents a variable has
in the BN structure.
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F.2.1. Variables with Zero Parents

In the case of variables without any parents in the BN structure, the marginal
probability of each state is explicitly elicited (Section 6.2.1, p157). The car in-
surance network had two variables without parents, and below are the questions
required to elicit the probabilities of each of their states.

Age Pr(Age=Adolescent) “What is the likelihood of the following scenario: Cli-
ent is a young adult?"

Pr(Age=Adult) "What is the likelihood of the following scenario: Client is
an adult?”

Pr(Age=Senior) “What is the likelihood of the following scenario: Client
is a senior?"

Mileage Pr(Mileage=FiveThou) "What is the likelihood of the following scen-
ario: Client’s car has driven less than 10,000km?"

Pr(Mileage=TwentyThou) "What is the likelihood of the following scen-
ario: Client’s car has driven between 10,000km and 20,000km?"

Pr(Mileage=FiftyThou) "What is the likelihood of the following scenario:
Client’s car has driven between 20,000km and 50,000km

Pr(Mileage=Domino) "What is the likelihood of the following scenario:
Client’s car has driven over 50,000km?”

F.2.2. Variables with One Parent

Variables with a single parent had their full CPT elicited explicitly, as described in
Section 6.2.2 (p160). One such variable was ILiCost (“Insurance Liability Cost”).
Below is a sampling of some questions required to elicit Pr (ILiCost|Accident)
using SEBN.

ILiCost Pr(ILiCost=Thousand|Accident=Zero) • What is the likelihood of
the following scenario?

– Client will claim less than $1,000 to fix buildings or property
damaged in an accident.
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• If we know that:

– Client will not get into an accident

Pr(ILiCost=Thousand|Accident=Mild) • What is the likelihood of the
following scenario?

– Client will claim less than $1,000 to fix buildings or property
damaged in an accident.

• If we know that:

– Client will get themselves into a mild accident

Pr(ILiCost=TenThou|Accident=Zero) • What is the likelihood of the
following scenario?

– Client will claim between $1,000 and $10,000 to fix buildings
or property damaged in an accident

• If we know that:

– Client will not get into an accident

F.2.3. Variables with Multiple Parents

Finally, variables with multiple parents follow the weighted sum algorithm in con-
junction with AHP (Section 6.2.3, p162). This consists of three different phases,
the first is to elicit the CPCs for each state of each parent. The second stage is to
elicit the conditional probabilities of each child state, conditioned on each of those
CPCs. Finally, the weight of each variable is calculated by asking for pairwise com-
parisons between each of the parent variables. For reference, questions regarding
the CPT of the CarV alue variable will be used in this section (Figure F.2).

Compatible Parent Configurations

Below is the question required to elicit the most compatible two states for the
VehicleYear and MakeModel variables, when Mileage is TenThou. This needs to
be repeated for each state of Mileage, and then for each state of the VehicleYear
and MakeModel variables.
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Car Value

< $1k
$1k - $10k

$10k - $100k
> $100k

Mileage

< 10k
10k - 40k

40k - 100k
> 100k

Vehicle Year

Older model
Current model

Car Type

Economy
Family
Sports
Luxury

Figure F.2.: The CarV alue variable has three parents, which means the CPT is
elicited using the weighted sum algorithm when using SEBN.

Mileage= CPC(Mileage=TenThou) • If Client’s car has driven less than 10,000km,
then I expect:

– Client’s car is a current model

– Client’s car is an older model

• And

– Client’s car is a sports car

– Client’s car is an economy car

– Client’s car is a family sedan

– Client’s car is a luxury car

Child Probabilities, Conditioned on CPCs

Once the relevant CPCs have been elicited, then the conditional probability of
the child states can be elicited. The following assumes that the probability be-
ing elicited is the Pr(CarV alue = Thou|CPC(Mileage = TenThou)).This also
presumes that the CPC of Mileage = TenThou was elicited as V ehicleY ear =
Current and MakeModel = FamilySedan by answering the question above:

• What is the likelihood of the following scenario?
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– “Clients car is worth less than $1,000 (at time of insuring)”

• If we know that:

– Client’s car has driven less than 10,000km

– Client’s car is a current model

– Client’s car is a family sedan

Pairwise Comparisons

To complete the weighted sum algorithm for the CarV alue, the following three
questions are required in order to perform AHP and obtain relative weights of each
parent:

Mileage vs VehicleYear • Which influences the (Monetary) value of client’s
car more?

– Vehicle Age

– Mileage

– Both have the same influence

Mileage vs MakeModel • Which influences the (Monetary) value of client’s
car more?

– Mileage

– Car type

– Both have the same influence

VehicleYear vs MakeModel • Which influences the (Monetary) value of cli-
ent’s car more?

– Vehicle Age

– Car type

– Both have the same influence
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